No part of this publication may be reproduced or distributed in any form or any means, electronic, mechanical, photocopying, or otherwise without the prior permission of the author.

GATE SOLVED PAPER Electronics & Communication Signals & Systems

#### Copyright © By NODIA & COMPANY

Information contained in this book has been obtained by authors, from sources believes to be reliable. However, neither Nodia nor its authors guarantee the accuracy or completeness of any information herein, and Nodia nor its authors shall be responsible for any error, omissions, or damages arising out of use of this information. This book is published with the understanding that Nodia and its authors are supplying information but are not attempting to render engineering or other professional services.

### **NODIA AND COMPANY**

B-8, Dhanshree Tower Ist, Central Spine, Vidyadhar Nagar, Jaipur 302039 Ph : + 91 - 141 - 2101150 www.nodia.co.in email : enquiry@nodia.co.in

# **GATE SOLVED PAPER - EC**

## **SIGNALS & SYSTEMS**

|      | 2013 ONE M                                                                                                                                                                                                                                                                                                                                                                                                                                             | ARK    |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Q. 1 | Two systems with impulse responses $h_1^{t}h$ and $h_2^{t}h$ are connected in cases.<br>Then the overall impulse response of the cascaded system is given by<br>(A) product of $h_1^{t}h$ and $h_2^{t}h$<br>(B) sum of $h_1^{t}h$ and $h_2^{t}h$<br>(C) convolution of $h_1^{t}h$ and $h_2^{t}h$<br>(D) subtraction of $h_2^{t}h$ from $h_1^{t}h$                                                                                                      | ade.   |
| Q. 2 | The impulse response of a system is $h^{t}h = tu^{t}h$ . For an input $u^{t} - 1h$ , the output is<br>(A) $\frac{t^{t}}{2}u^{t}h$ (B) $\frac{t^{t}t - 1h}{2}u^{t} - 1h$<br>(C) $\frac{h^{t} - 1h^{2}}{2}u^{t} - 1h$ (D) $\frac{t^{2} - 1}{2}u^{t} - 1h$                                                                                                                                                                                                | 2      |
| Q. 3 | For a periodic signal $v^{t}h = 30 \sin 100t + 10 \cos 300t + 6 \sin 500t + p/4h$ ,<br>fundamental frequency in rad/s<br>(A) 100 (B) 300<br>(C) 500 (D) 1500                                                                                                                                                                                                                                                                                           | the    |
| Q. 4 | A band-limited signal with a maximum frequency of 5 kHz is to be sampled.According to the sampling theorem, the sampling frequency which is not va(A) 5 kHz(B) 12 kHz(C) 15 kHz(D) 20 kHz                                                                                                                                                                                                                                                              | lid is |
| Q. 5 | <ul> <li>Which one of the following statements is NOT TRUE for a continuous time causal and stable LTI system?</li> <li>(A) All the poles of the system must lie on the left side of the <i>jw</i> axis</li> <li>(B) Zeros of the system can lie anywhere in the s-plane</li> <li>(C) All the poles must lie within s = 1</li> <li>(D) All the roots of the characteristic equation must be located on the left side of the <i>jw</i> axis.</li> </ul> | de     |
| Q. 6 | Assuming zero initial condition, the response $y^t$ h of the system given below to a unit step input $u^t$ h is $\underbrace{U(s)}_{t=1}^{t=1} \underbrace{\frac{1}{s}}_{t=1}^{t=1} \underbrace{Y(s)}_{t=1}$                                                                                                                                                                                                                                           | ı      |
|      | (A) $u^t h$ (B) $tu^t h$                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
|      | *2                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |

(C)  $\frac{t^2}{2}u^{\Lambda}th$  (D)  $e^{-t}u^{\Lambda}th$ 

Let  $g^{th} = e^{-p^{t^{2}}}$ , and  $h^{th}$  is a filter matched to  $g^{th}$ . If  $g^{th}$  is applied as input Q. 7 to *h*^*t* **h**, then the Fourier transform of the output is (B)  $e^{-pf^2/2}$ (A)  $e^{-pf^2}$ (D)  $e^{-2pf^2}$ (C)  $e^{-p|f|}$ 2013 **TWO MARKS** The impulse response of a continuous time system is given by  $ht = \partial t - h + \partial t - 3h$ Q. 8 . The value of the step response at t = 2 is **(B)** 1 (A) 0(C) 2 (D) 3 A system described by the differential equation  $\frac{d^2 y}{dt^2} + 5 \frac{dy}{dt} + 6y^t h = x^t h$ . Let Q. 9 0 < t < 2 $x^t h = *_0^1$ otherwise Assuming that  $y^{0}h = 0$  and  $\frac{dy}{dt} = 0$  at t = 0, the Laplace transform of  $y^{t}h$  is (B)  $\frac{1 - e^{-2s}}{s^{\Lambda s} + 2h^{\Lambda s} + 3h}$ (D)  $\frac{1 - e^{-2s}}{\Lambda s + 2h^{\Lambda s} + 2h}$ (A)  $\frac{e^{-2s}}{s^{\Lambda}s + 2h^{\Lambda}s + 3h}$ (C)  $\frac{e^{-2s}}{\Lambda s + 2h^{\Lambda}s + 3h}$ A system described by a linear, constant coefficient, ordinary, first order differential 0.10 equation has an exact solution given by  $y^{t}$  h for t > 0, when the forcing function is  $x^t$  h and the initial condition is  $y^0$ h. If one wishes to modify the system so that the solution becomes  $-2v^{th}$  for t > 0, we need to (A) change the initial condition to  $-y^{0}h$  and the forcing function to  $2x^{t}h$ 

(B) change the initial condition to  $2y^{0}h$  and the forcing function to  $-x^{t}h$ (C) change the initial condition to  $j\sqrt{2}y^{0}h$  and the forcing function to  $j\sqrt{2}x^{t}h$ 

(D) change the initial condition to  $-2y^{0h}$  and the forcing function to  $-2x^{t}h$ 

Б

V

The DFT of a vector  $8a \ b \ c \ dB$  is the vector  $8a \ b \ g \ dB$ . Consider the product

$$\begin{cases} a & b & c & d_{W} \\ Sd & a & b & c_{W} \\ Sd & a$$

Q. 11

**ONE MARK** 

**Q. 12** The unilateral Laplace transform of f(t) is  $\frac{1}{s^2 + s + 1}$ . The unilateral Laplace transform of tf(t) is  $(A) - \frac{s}{(s^2 + s + 1)^2}$  (B)  $-\frac{2s + 1}{(s^2 + s + 1)^2}$ 

(C) 
$$\frac{s}{(s^2 + s + 1)^2}$$
 (D)  $\frac{2s + 1}{(s^2 + s + 1)^2}$ 

Q. 13

If  $x[n] = (1/3)^{|n|} - (1/2)^n u[n]$ , then the region of convergence (ROC) of its z -transform in the z -plane will be

(A)  $\frac{1}{3} < |z| < 3$ (B)  $\frac{1}{3} < |z| < \frac{1}{2}$ (C)  $\frac{1}{2} < |z| < 3$ (D)  $\frac{1}{3} < |z|$ 

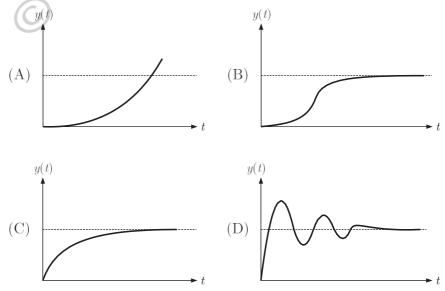
## **Q. 14** The input x(t) and output y(t) of a system are related $asy(t) = # \dot{x}(T) \cos(3T) dT$ . The system is (A) time-invariant and stable (B) stable and not time-invariant (C) time-invariant and not stable (D) not time-invariant and not stable

**Q. 15** The Fourier transform of a signal h(t) is  $H(jw) = (2 \cos w) (\sin 2w) / w$ . The value of h(0) is (A) 1/4 (B) 1/2

- (A) 1/4(C) 1
- **Q. 16** Let y[n] denote the convolution of h[n] and g[n], where  $h[n] = (1/2)^n u[n]$  and g[n] is a causal sequence. If y[0] = 1 and y[1] = 1/2, then g[1] equals
  - (A) 0
  - (C) 1

<u>2011</u>

**ONE MARK** 

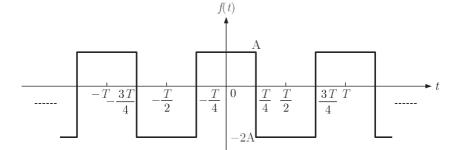

```
Q. 17
```

The differential equation  $100\frac{d^2y}{dt} - 20\frac{dy}{dt} + y = x(t)$  describes a system with an input x(t) and an output y(t). The system, which is initially relaxed, is excited

(D) 2

(B) 1/2 (D) 3/2

by a unit step input. The output  $y^t h$  can be represented by the waveform




| Q. 18 | The trigonometric Fourier series of an even f                                                                                                                 | unction does not have the                                            |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
|       | (A) dc term                                                                                                                                                   | (B) cosine terms                                                     |
|       | (C) sine terms                                                                                                                                                | (D) odd harmonic terms                                               |
| Q. 19 | A system is defined by its impulse respon<br>(A) stable and causal                                                                                            | nse $h(n) = 2^n u(n-2)$ . The system is<br>(B) causal but not stable |
|       | (C) stable but not causal                                                                                                                                     | (D) unstable and non-causal                                          |
| Q. 20 | If the unit step response of a network is (1                                                                                                                  | $1 - e^{-\alpha^t}$ ), then its unit impulse response                |
|       | is                                                                                                                                                            |                                                                      |
|       | (A) $\Box e^{-\Box^t}$                                                                                                                                        |                                                                      |
|       | (C) $(1 - \alpha^{-1})e^{-\alpha^{t}}$                                                                                                                        | (D) $(1 - \alpha)e^{-\alpha^{t}}$                                    |
|       |                                                                                                                                                               |                                                                      |
|       | 2011                                                                                                                                                          | TWO MARKS                                                            |
| Q. 21 | An input $x(t) = \exp(-2t) u(t) + d(t-6)$                                                                                                                     | is applied to an LTI system with impulse                             |
|       | response $h(t) = u(t)$ . The output is (A)                                                                                                                    |                                                                      |
|       | $[1 - \exp(-2t)] u(t) + u(t+6)$ (D) [1 - exp(-2t)] u(t) + u(t+6)                                                                                              | G                                                                    |
|       | (B) $[1 - \exp(-2t)]u(t) + u(t - 6)$                                                                                                                          | *                                                                    |
|       | (C) $0.5[1 - \exp(-2t)]u(t) + u(t+6)$                                                                                                                         |                                                                      |
|       | (D) $0.5[1 - \exp(-2t)]u(t) + u(t-6)$                                                                                                                         |                                                                      |
| Q. 22 | Two systems $H_1(Z)$ and $H_2(Z)$ are connect<br>overall output $y(n)$ is the same as the input                                                               |                                                                      |
|       | transfer function of the second system $H_2(Z)$                                                                                                               | · · · · · · · · · · · · · · · · · · ·                                |
|       |                                                                                                                                                               |                                                                      |
|       | $x(n) \longrightarrow H_1(z) = \frac{(1 - 0.4z^{-1})}{(1 - 0.6z^{-1})}$                                                                                       | $H_2(z) \longrightarrow y(n)$                                        |
|       |                                                                                                                                                               |                                                                      |
|       | (A) $1 - 0.6z^{-1}$                                                                                                                                           | (B) $\frac{z^{-1}(1-0.6z^{-1})}{z^{-1}}$                             |
|       | (A) $\frac{1 - 0.6z^{-1}}{z^{-1}(1 - 0.4z^{-1})}$<br>$z^{-1}(1 - 0.4z^{-1})$                                                                                  | (B) $\frac{z^{-1}(1-0.6z^{-1})}{(1-0.4z^{-1})}$ $1-0.4z^{-1}$        |
|       | (C) $\frac{(1-0.6z^{-1})}{(1-0.6z^{-1})}$                                                                                                                     | (D) $\frac{1}{z^{-1}(1-0.6z^{-1})}$                                  |
|       |                                                                                                                                                               | · · · ·                                                              |
| Q. 23 | The first six points of the 8-point DFT of a $5 \cdot 1 = \frac{1}{2} \cdot 2 \cdot 2 = \frac{1}{2} \cdot 4 \cdot 0$ and $2 \cdot 1 \cdot 4 \cdot 1$ The left | -                                                                    |
|       | 5, $1 - j$ 3, 0, $3 - j$ 4, 0 and $3 + j$ 4. The la (A) 0, $1 - j$ 3                                                                                          | (B) 0, $1 + j3$                                                      |
|       |                                                                                                                                                               | (D) $1 - i3, 5$                                                      |
|       | (0) 1 · j0, 0                                                                                                                                                 | (2)1 ]3,3                                                            |
|       | 2010                                                                                                                                                          | ONE MARK                                                             |
| Q. 24 | Consider the <i>z</i> -transform $x(z) = 5z^2 + 4z^2$                                                                                                         | $4z^{-1} + 3; \ 0 <  z  < 3.$ The inverse z -                        |
|       | transform x [n] is                                                                                                                                            |                                                                      |
|       | (A) $5d[n+2] + 3d[n] + 4d[n-1]$                                                                                                                               |                                                                      |
|       | (B) $5d[n-2] + 3d[n] + 4d[n+1]$                                                                                                                               |                                                                      |
|       | (C) $5u[n+2] + 3u[n] + 4u[n-1]$                                                                                                                               |                                                                      |
|       | (D) $5u[n-2] + 3u[n] + 4u[n+1]$                                                                                                                               |                                                                      |
|       |                                                                                                                                                               |                                                                      |

#### **GATE SOLVED PAPER - EC**

#### Q. 25

#### The trigonometric Fourier series for the waveform f(t) shown below contains



- (A) only cosine terms and zero values for the dc components
- (B) only cosine terms and a positive value for the dc components
- (C) only cosine terms and a negative value for the dc components
- (D) only sine terms and a negative value for the dc components
- **Q. 26** Two discrete time system with impulse response  $h_1[n] = d[n-1]$  and  $h_2[n] = d[n-2]$  are connected in cascade. The overall impulse response of the cascaded system is (A) d[n-1] + d[n-2] (B) d[n-4]
  - (C) d[n-3] (D) d[n-1] d[n-2]
- **Q. 27** For a *N*-point FET algorithm  $N = 2^m$  which one of the following statements is TRUE ?
  - (A) It is not possible to construct a signal flow graph with both input and output in normal order
  - (B) The number of butterflies in the  $m^{\text{th}}$  stage in N / m
  - (C) In-place computation requires storage of only 2N data
  - (D) Computation of a butterfly requires only one complex multiplication.

Q. 28 (C) 3 2010 3s + 1 3s + 1 TWO MARKS $Given <math>f(t) = L^{-1} 3s + 1 11 11m f(t) = 1$ , then the value of k is (B) 2 (B) 2 (B) 4

Q. 29

A continuous time LTI system is described by  

$$d^{2}y(t) = dy(t) = dx(t)$$

$$\frac{y(t)}{dt^2} + \frac{y(t)}{4} + 3y(t) = 2\frac{dt}{dt} + 4x(t)$$

Assuming zero initial conditions, the response y (t) of the above system for the input  $x(t) = e^{-2t}u(t)$  is given by (A)  $(e^t - e^{3t})u(t)$ 

(A) 
$$(e^{-t} - e^{-t})u(t)$$
  
(B)  $(e^{-t} - e^{-t})u(t)$   
(C)  $(e^{-t} + e^{-3t})u(t)$   
(D)  $(e^{t} + e^{3t})u(t)$ 

The transfer function of a discrete time LTI system is given by

$$H(z) = \frac{2 - \frac{3}{4}z^{-1}}{1 - \frac{3}{4}z^{-1} + \frac{1}{8}z^{-2}}$$

Consider the following statements:

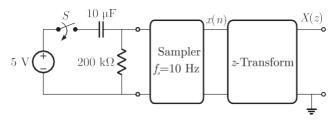
S1: The system is stable and causal for ROC:  $z \mid > 1/2$ S2: The system is stable but not causal for ROC:  $z \leq 1/4$ 

S3: The system is neither stable nor causal for ROC: 1/4 < z| < 1 / 2 Which one of the following statements is valid? (A) Both S1 and S2 are true (B) Both S2 and S3 are true (C) Both S1 and S3 are true (D) S1, S2 and S3 are all true 2009 **ONE MARK** The Fourier series of a real periodic function has only Q. 31 (P) ) cosine terms if it is even (O) sine terms if it is even (R) cosine terms if it is odd (S) sine terms if it is odd Which of the above statements are correct? (A) P and S (B) P and R (D) Q and R (C) Q and S A function is given by  $f(t) = \sin^2 t + \cos 2t$ . Which of the following is true ? Q. 32 (A) f has frequency components at 0 and  $\frac{1}{2}$  Hz<sub>2p</sub> (B) f has frequency components at 0 and  $\frac{1}{2}$  Hz<sub>n</sub> (C) f has frequency components at  $\frac{1}{2}$  and  $\frac{1}{n}$  Hz р (D) f has frequency components at  $\frac{0.1}{2}$  and  $\frac{2p}{1}$  Hz The ROC of z -transform of the discrete time sequence Q. 33  $x(n) = b^{\frac{1}{2}} u(n) - b^{\frac{1}{2}} u(-n-1)$  is 2 (B)  $z \uparrow \frac{1}{2}$ (D) 2 < *z* ≤ 3 2009 **TWO MARKS** Given that F(s) is the one-side Laplace transform of f(t), the Laplace transform Q. 34 of # f(T) dT is (B)  $\frac{1}{s} F(s)$ (D)  $\frac{1}{s} [F(s) - f(0)]$ (A) sF(s) - f(0)(C)  $\#^{s} F(T) dT$ Q. 35 A system with transfer function H(z) has impulse response h(.) defined as h(2) = 1, h(3) = -1 and h(k) = 0 otherwise. Consider the following statements. S1 : H(z) is a low-pass filter. S2 : H(z) is an FIR filter. Which of the following is correct? (A) Only S2 is true (B) Both S1 and S2 are false (C) Both S1 and S2 are true, and S2 is a reason for S1 (D) Both S1 and S2 are true, but S2 is not a reason for S1

-3

Q. 36

h(t)Which of the following four properties are possessed by the system ? BIBO : Bounded input gives a bounded output. Causal : The system is causal, LP: The system is low pass. LTI: The system is linear and time-invariant. (A) Causal, LP (B) BIBO, LTI (C) BIBO, Causal, LTI (D) LP, LTI Q. 37 The 4-point Discrete Fourier Transform (DFT) of a discrete time sequence {1,0,2,3} is (A) [0, -2 + 2j, 2, -2 - 2j](B) [2, 2+2j, 6, 2-2j](D) [6, -1 + 3j, 0, -1 - 3j](C) [6, 1-3j, 2, 1+3j] $\frac{s^2+1}{s^2+2s+1}$  and input  $x(t) = \sin(t+1)$  is in An LTI system having transfer function Q. 38 steady state. The output is sampled at a rate  $w_s$ rad / s to obtain the final output  $\{x(k)\}$ . Which of the following is true ? (A) y(.) is zero for all sampling frequencies  $w_s$ (B) y (.) is nonzero for all sampling frequencies  $w_s$ (C) y (.) is nonzero for  $w_s > 2$ , but zero for  $w_s < 2$ (D) y (.) is zero for  $w_s > 2$ , but nonzero for  $w_2 < 2$ 2008 **ONE MARK** The input and output of a continuous time system are respectively denoted by Q. 39 x(t) and y(t). Which of the following descriptions corresponds to a causal system 2 (B) y(t) = (t-4)x(t+1)(A) y(t) = x(t-2) + x(t+4)(D) y(t) = (t+5)x(t+5)(C) y(t) = (t + 4) x (t - 1)Q. 40 The impulse response h(t) of a linear time invariant continuous time system is described by  $h(t) = \exp(at)u(t) + \exp(bt)u(-t)$  where u(-t) denotes the unit step function, and a and b are real constants. This system is stable if (A) a is positive and b is positive (B) a is negative and b is negative (C) a is negative and b is negative (D) a is negative and b is positive <u>2008</u> **TWO MARKS** 


Consider a system whose input x and output y are related by the equation

 $y(t) = \# \dot{x}(t-T)g(2T) dT$  where h(t) is shown in the graph.

**Q.41** A linear, time - invariant, causal continuous time system has a rational transfer function with simple poles at s = -2 and s = -4 and one simple zero at s = -1.

A unit step u(t) is applied at the input of the system. At steady state, the output has constant value of 1. The impulse response of this system is (A)  $[\exp(-2t) + \exp(-4t)] u(t)$ (B)  $[-4\exp(-2t) - 12\exp(-4t) - \exp(-t)]u(t)$ (C)  $[-4\exp(-2t) + 12\exp(-4t)]u(t)$ (D)  $[-0.5 \exp(-2t) + 1.5 \exp(-4t)] u(t)$ Q. 42 The signal x(t) is described by  $x(t) = \frac{1}{0} \quad \text{for} - 1 \not\# t \not\# + 1$ otherwise Two of the angular frequencies at which its Fourier transform becomes zero are (A) *p*, 2*p* (B) 0.5*p*, 1.5*p* (C) 0, p (D) 2p. 2.5p Q. 43 A discrete time linear shift - invariant system has an impulse response h[n] with h[0] = 1, h[1] = -1, h[2] = 2, and zero otherwise The system is given an input sequence x [n] with x [0] = x [2] = 1, and zero otherwise. The number of nonzero samples in the output sequence y[n], and the value of y[2] are respectively (B) 6,2 (D) 5,3 (A) 5, 2 (C) 6, 1 Q. 44 Let x(t) be the input and y(t) be the output of a continuous time system. Match the system properties P1, P2 and P3 with system relations R1, R2, R3, R4 Properties Relations P1 : Linear but NOT time - invariant R1 :  $y(t) = t^2 x(t)$ R2 : y(t) = t | x(t) |P2 : Time - invariant but NOT linear P3 : Linear and time - invariant R3: y(t) = x(t)R4: y(t) = x(t-5)(A) (P1, R1), (P2, R3), (P3, R4) (B) (P1, R2), (P2, R3), (P3, R4) (C) (P1, R3), (P2, R1), (P3, R2) (D) (P1, R1), (P2, R2), (P3, R3)  $\{x(n)\}\$  is a real - valued periodic sequence with a period N. x(n) and X(k) form Q. 45 N-point Discrete Fourier Transform (DFT) pairs. The DFT Y(k) of the sequence  $y(n) = \frac{1}{N} \sum_{r=0}^{N} x(r) x(n+r)$  is (B)  $\frac{1}{N} \sum_{r=0}^{N-1} X(r) X(k+r)$ (A)  $|X(k)|^2$ (C)  $\frac{1}{N} \sum_{n=0}^{N-1} X(r) X(k+r)$ (D) 0 **Statement for Linked Answer Question 46 and 47:** 

In the following network, the switch is closed at  $t = 0^-$  and the sampling starts from t = 0. The sampling frequency is 10 Hz.



**Q.46** The samples 
$$x(n)$$
,  $n = (0, 1, 2, ...)$  are given by  
(A)  $5(1 - e^{-0.05n})$  (B)  $5e^{-0.05n}$   
(C)  $5(1 - e^{-5n})$  (D)  $5e^{-5n}$ 

**Q. 47** The expression and the region of convergence of the z -transform of the sampled signal are

(A) 
$$\frac{5z}{z-e^5}$$
  $|z| < e^{-5}$   
(B)  $\frac{5z}{z-e^{-0.05}}$ ,  $|z| < e^{-0.05}$   
(C)  $\frac{5z}{z-e^{-0.05}}$ ,  $|z| > e^{-0.05}$   
(D)  $\frac{5z}{z-e^{-5}}$ ,  $|z| > e^{-5}$ 

#### Statement for Linked Answer Question 48 & 49:

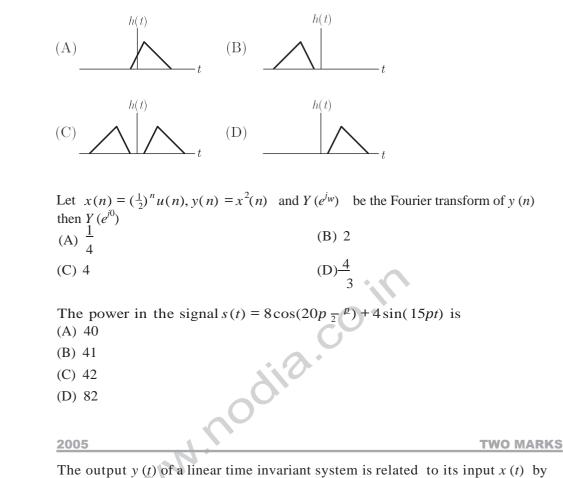
The impulse response h(t) of linear time - invariant continuous time system is given by  $h(t) = \exp(-2t) u(t)$ , where u(t) denotes the unit step function.

Q. 48 The frequency response H(w) of this system in terms of angular frequency w, is given by H(w)(A) <u>1</u> (B)  $\underline{\sin w}$ 1 + i2w $(D) \quad \underline{jw} \\ 2 + jw$ (C)  $\frac{1}{2+iw}$ The output of this system, to the sinusoidal input  $x(t) = 2\cos 2t$  for all time t, is Q. 49 (B)  $2^{-0.25} \cos(2t - 0.125p)$ (A) 0 (D)  $2^{-0.5} \cos(2t - 0.25p)$ (C)  $2^{-0.5}\cos(2t - 0.125p)$ 2007 **ONE MARK** If the Laplace transform of a signal Y(s) =-, then its final value is Q. 50 s(s-1)(A) - 1(B) Ò (C) 1 (D) Unbounded **TWO MARKS** 2007 The 3-dB bandwidth of the low-pass signal  $e^{-t}u(t)$ , where u(t) is the unit step Q. 51 function, is given by  $(A) \stackrel{I}{-} Hz$  $(B)\frac{1}{2p}\sqrt{\sqrt{2}} - 1 \text{ Hz}$ 2p(C) 3 (D) 1 Hz A 5-point sequence x[n] is given as x[-3] = 1, x[-2] = 1, x[-1] = 0, x[0] = 5Q. 52 and x[1] = 1. Let  $X(e^{i_W})$  denoted the discrete-time Fourier transform of x[n]. The value of  $\#^{p} X(e^{j_{w}}) dw$  is (A) 5 (B) 10p (D) 5 + i10p(C) 16p The z-transform X(z) of a sequence x[n] is given by  $X[z] = \frac{0.5}{1}$ . It is given that Q. 53 the region of convergence of X(z) includes the unit circle. The value of x[0] is (A) - 0.5(B) 0 (C) 0.25 (D) 05

**a.** 54 A Hilbert transformer is a  
(A) non-linear system (B) non-causal system  
(C) time-varying system (D) low-pass system  
**a.** 55 The frequency response of a linear, time-invariant system is given by  

$$H'(f) = \frac{1}{4 + \frac{5}{10} dt'}$$
. The step response of the system is  
(A) 5(1 -  $e^{-5y})u(f)$  (B) 561 -  $e^{-\frac{5}{2}}hu(f)$   
(C)  $\frac{1}{2}(1 - e^{-5y})u(f)$  (D)  $\frac{1}{5}^{A1} - e^{-\frac{1}{5}}hu(f)$   
**2006**  
**ONE MARK**  
**a.** 56 Let  $x(f) \stackrel{\text{ste}}{X} X(jw)$  be Fourier Transform pair. The Fourier Transform of the signal  
 $x (5t \frac{1}{2} \cdot \frac{3}{2k} \text{in terms of } X(jw)$  is given as  
(A)  $5e^{-5x}b_{5}1$  (B)  $\frac{1}{5}e^{5x}b_{5}51$   
(C)  $\frac{1}{5}e^{-jhx}Xb\frac{jw}{5}1$  (D)  $\frac{1}{5}e^{jhx}Xb\frac{jw}{5}1$   
**a.** 57 The Dirac delta function  $d(f)$  is defined as  
(A)  $d(f) = \int_{0}^{1} t=0$   
(B)  $d(f) = \int_{0}^{3} t=0$   
(B)  $d(f) = \int_{0}^{3} t=0$   
(D)  $d(f) = \int_{0}^{3} t=0$   
(D)  $d(f) = \int_{0}^{3} t=0$  and  $\frac{\#}{3}d(f)dt = 1$   
(D)  $d(f) = \int_{0}^{3} t=0$  and  $\frac{\#}{-3}d(f)dt = 1$   
(D)  $d(f) = \int_{0}^{3} t=0$  and  $\frac{\#}{-3}d(f)dt = 1$   
(D)  $d(f) = \int_{0}^{3} t=0$  and  $\frac{\#}{-3}d(f)dt = 1$   
(D)  $d(f) = \int_{0}^{3} t=0$  and  $\frac{\#}{-3}d(f)dt = 1$   
(D)  $d(f) = \int_{0}^{3} t=0$  and  $\frac{\#}{-3}d(f)dt = 1$   
(D)  $d(f) = \int_{0}^{3} t=0$  and  $\frac{\#}{-3}d(f)dt = 1$   
(D)  $\frac{1}{3} < |z| < 3$  (B)  $\frac{2}{3} < |z| < \frac{2}{3}$  then the region of convergence of  $x_1[n] + x_2[n]$  is  $\frac{1}{3} < |z| < \frac{2}{3}$  then the region of convergence of  $x_1[n] - x_2[n]$  includes  
(A)  $\frac{\pi}{3} < |z| < 3$  (D)  $\frac{1}{3} < |z| < \frac{2}{3}$   
**b.** 59 In the system shown below,  $x(f) = (\sin t) u(f)$  In steady-state, the response  $y(f)$  will be

(A)  $\frac{1}{\sin^{5}t} + \frac{p}{j}$ (B)  $\frac{1}{\sin^{5}t} + \frac{p}{j}$ (C)  $\frac{1}{\sqrt{2}}e^{-t}\sin t$ (B)  $\frac{1}{\sin^{5}t} + \frac{p}{j}$ (D)  $\sin t - \cos t$ 2006


**TWO MARKS** 

Q. 60

Consider the function f(t) having Laplace transform

$$F(s) = \frac{w_0}{s^2 + w_0^2} \operatorname{Re}[s] > 0$$

|                | The final value of $f(t)$ would be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                       |                                       |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
|                | (A) 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (B) 1                                                                                                                                                                                                                                                 |                                       |
|                | (C) $-1 # f(3) # 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (D) <b>3</b>                                                                                                                                                                                                                                          |                                       |
| Q. 61          | <ul> <li>A system with input x [n] and output y system is</li> <li>(A) linear, stable and invertible</li> <li>(B) non-linear, stable and non-invertible</li> <li>(C) linear, stable and non-invertible</li> <li>(D) linear, unstable and invertible</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                       | <i>n</i> ) <i>x</i> [ <i>n</i> ]. The |
| Q. 62          | The unit step response of a system star                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                       | $f(t) = 1 - e^{-2t}$                  |
|                | for $t \$ 0$ . The transfer function of the system<br>(A) $-\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $(B) \frac{2}{2}$                                                                                                                                                                                                                                     |                                       |
|                | 1 + 2s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (B) $\frac{2}{2+s}$<br>(D) $\frac{2s}{1+2s}$                                                                                                                                                                                                          |                                       |
|                | (C) $\frac{1}{2+s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (D) $\frac{2s}{1+2s}$                                                                                                                                                                                                                                 |                                       |
| Q. 63          | The unit impulse response of a system steady-state value of the output for unit $(A) - 1$ (C) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                       | s system the                          |
|                | 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *                                                                                                                                                                                                                                                     | ONE MARK                              |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                       |                                       |
| <b>Q.</b> 64   | Choose the function $f(t)$ ; $-3 < t < 3$ for $f(t)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                       |                                       |
| Q. 64          | (A) 3sin(25 <i>t</i> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (B) $4\cos(20t+3) + 2\sin(7t)$                                                                                                                                                                                                                        |                                       |
| <b>Q.</b> 64   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                       |                                       |
| Q. 64<br>Q. 65 | (A) 3sin(25 <i>t</i> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (B) $4\cos(20t+3) + 2\sin(7t)$<br>(D) 1                                                                                                                                                                                                               | 710 <i>t</i> )                        |
|                | (A) $3\sin(25t)$<br>(C) $\exp(- t )\sin(25t)$<br>The function $x(t)$ is shown in the figure.<br>function $u(t)$ are respectively,<br>$\frac{x(t)}{1 - \frac{1}{1 -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>(B) 4cos (20t + 3) + 2sin (7)</li> <li>(D) 1</li> <li>Even and odd parts of a unit</li> </ul>                                                                                                                                                | 710 <i>t</i> )                        |
|                | (A) $3\sin(25t)$<br>(C) $\exp(- t )\sin(25t)$<br>The function $x(t)$ is shown in the figure.<br>function $u(t)$ are respectively,<br>$ \underbrace{x(t)}_{1 \\ -1} \\ \underbrace{x(t)}_{-1} \\ \underbrace{x(t)}_{2} \\ x$ | (B) $4\cos(20t+3) + 2\sin(7)$<br>(D) 1<br>Even and odd parts of a unit<br>(B) $-\frac{1}{2}, \frac{1}{2}x(t)$                                                                                                                                         | 710 <i>t</i> )                        |
|                | (A) $3\sin(25t)$<br>(C) $\exp(- t )\sin(25t)$<br>The function $x(t)$ is shown in the figure.<br>function $u(t)$ are respectively,<br>$\frac{x(t)}{1 - \frac{1}{1 -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>(B) 4cos (20t + 3) + 2sin (7)</li> <li>(D) 1</li> <li>Even and odd parts of a unit</li> </ul>                                                                                                                                                | 710 <i>t</i> )                        |
|                | (A) $3\sin(25t)$<br>(C) $\exp(- t )\sin(25t)$<br>The function $x(t)$ is shown in the figure.<br>function $u(t)$ are respectively,<br>$\underbrace{x(t)}_{1 \\ 0 \\ -1} t$ (A) $\frac{1}{2}, \frac{1}{2}x(t)$<br>(C) $\frac{1}{2}, -\frac{1}{2}x(t)$<br>(C) $\frac{1}{2}, -\frac{1}{2}x(t)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (B) $4\cos(20t + 3) + 2\sin(7)$<br>(D) 1<br>Even and odd parts of a unit<br>(B) $-\frac{1}{2}, \frac{1}{2}x(t)$<br>(D) $-\frac{1}{2}, -\frac{1}{2}x(t)$                                                                                               | 710 <i>t</i> )                        |
| Q. 65          | (A) $3\sin(25t)$<br>(C) $\exp(- t )\sin(25t)$<br>The function $x(t)$ is shown in the figure.<br>function $u(t)$ are respectively,<br>$\underbrace{x(t)}_{1 \\ 0 \\ -1} t$ (A) $\frac{1}{2}, \frac{1}{2}x(t)$<br>(C) $\frac{1}{2}, -\frac{1}{2}x(t)$<br>The region of convergence of $z$ – tran<br>$b = \begin{bmatrix} u(n) - b \\ 0 \\ -1 \end{bmatrix} \begin{bmatrix} u(-n-1) \end{bmatrix}$ must be<br>$b = \begin{bmatrix} u(n) - b \\ 0 \\ -1 \end{bmatrix} \begin{bmatrix} u(-n-1) \end{bmatrix}$ must be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (B) $4\cos(20t + 3) + 2\sin(7)$<br>(D) 1<br>Even and odd parts of a unit<br>(B) $-\frac{1}{2}, \frac{1}{2}x(t)$<br>(D) $-\frac{1}{2}, -\frac{1}{2}x(t)$<br>(D) $-\frac{1}{2}, -\frac{1}{2}x(t)$<br>sform of the sequence                              | 710 <i>t</i> )                        |
| Q. 65          | (A) $3\sin(25t)$<br>(C) $\exp(- t )\sin(25t)$<br>The function $x(t)$ is shown in the figure.<br>function $u(t)$ are respectively,<br>$\underbrace{x(t)}_{1 \ -1} t$ (A) $\frac{1}{2}, \frac{1}{2}x(t)$ (C) $\frac{1}{2}, -\frac{1}{2}x(t)$<br>(C) $\frac{1}{2}, -\frac{1}{2}x(t)$<br>The region of convergence of $z$ - tran<br>$b \stackrel{2}{=} \  u(n) - b \stackrel{2}{=} \  u(-n-1)$ must be<br>$6 \qquad 5$<br>(A) $ z  \leq \frac{5}{6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (B) $4\cos(20t+3) + 2\sin(7t)$<br>(D) 1<br>Even and odd parts of a unit<br>(B) $-\frac{1}{2}, \frac{1}{2}x(t)$<br>(D) $-\frac{1}{2}, -\frac{1}{2}x(t)$<br>(D) $-\frac{1}{2}, -\frac{1}{2}x(t)$<br>asform of the sequence<br>(B) $ z  \ge \frac{5}{6}$ | 710 <i>t</i> )                        |
| Q. 65          | (A) $3\sin(25t)$<br>(C) $\exp(- t )\sin(25t)$<br>The function $x(t)$ is shown in the figure.<br>function $u(t)$ are respectively,<br>$\underbrace{x(t)}_{1 \\ 0 \\ -1} t$ (A) $\frac{1}{2}, \frac{1}{2}x(t)$<br>(C) $\frac{1}{2}, -\frac{1}{2}x(t)$<br>The region of convergence of $z$ – tran<br>$b = \begin{bmatrix} u(n) - b \\ 0 \\ -1 \end{bmatrix} \begin{bmatrix} u(-n-1) \end{bmatrix}$ must be<br>$b = \begin{bmatrix} u(n) - b \\ 0 \\ -1 \end{bmatrix} \begin{bmatrix} u(-n-1) \end{bmatrix}$ must be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (B) $4\cos(20t + 3) + 2\sin(7)$<br>(D) 1<br>Even and odd parts of a unit<br>(B) $-\frac{1}{2}, \frac{1}{2}x(t)$<br>(D) $-\frac{1}{2}, -\frac{1}{2}x(t)$<br>(D) $-\frac{1}{2}, -\frac{1}{2}x(t)$<br>sform of the sequence                              | 710 <i>t</i> )                        |



the following equations

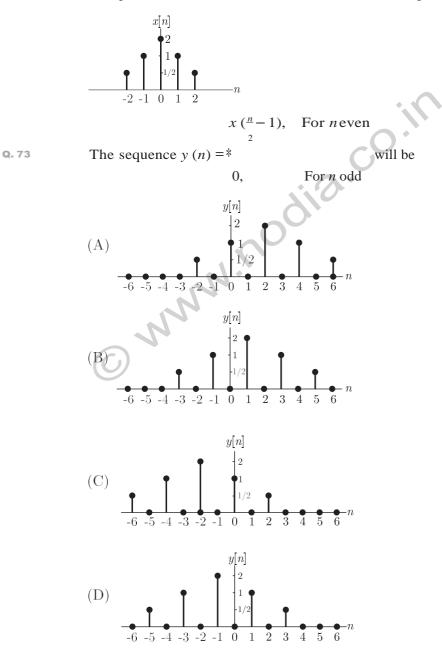
$$y(t) = 0.5x(t - t_d + T) + x(t - t_d) + 0.5x(t - t_d + T)$$

The filter transfer function H(w) of such a system is given by(A)  $(1 + \cos wT) e^{-j_W t_d}$ (B)  $(1 + 0.5 \cos wT) e^{-j_W t_d}$ (C)  $(1 - \cos wT) e^{-j_W t_d}$ (D)  $(1 - 0.5 \cos wT) e^{-j_W t_d}$ 

Q. 70

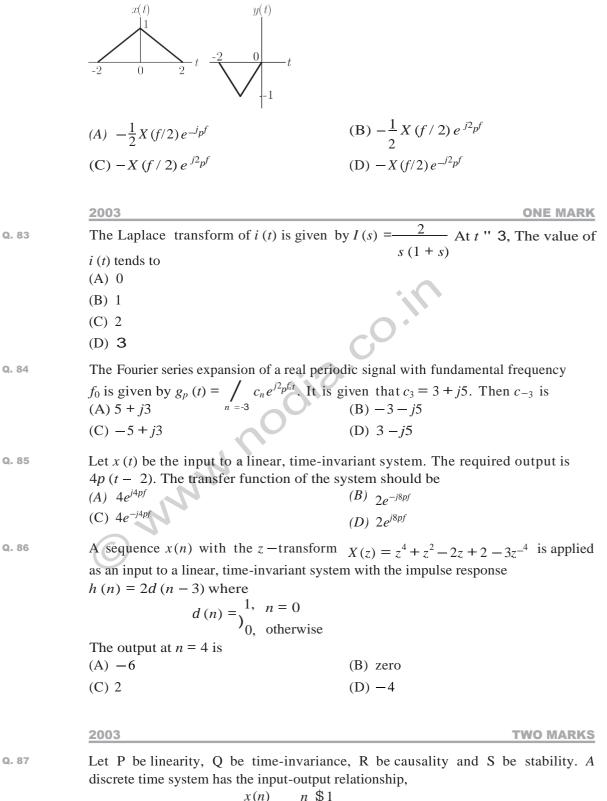
Q. 68

Q. 69


Match the following and choose the correct combination. Group 1

- E. Continuous and aperiodic signal
- F. Continuous and periodic signal
- G. Discrete and aperiodic signal
- H. Discrete and periodic signal Group 2
- 1. Fourier representation is continuous and aperiodic
- 2. Fourier representation is discrete and aperiodic
- 3. Fourier representation is continuous and periodic
- 4. Fourier representation is discrete and periodic
- (A) E 3, F 2, G 4, H 1
- (B) E 1, F 3, G 2, H 4
- (C) E 1, F 2, G 3, H 4
- (D) E−2, F−1, G−4, H−3

- **Q. 72** A signal  $x(n) = \sin(w_0 n + f)$  is the input to a linear time-invariant system having a frequency response  $H(e^{j_w})$ . If the output of the system  $Ax(n - n_0)$  then the most general form of  $+H(e^{j_w})$  will be (A)  $- n_0w_0 + b$  for any arbitrary real (B)  $- n_0w_0 + 2pk$  for any arbitrary integer k
  - (C)  $n_0w_0 + 2pk$  for any arbitrary integer k
  - $(D) n_0 w_0 f$


#### Statement of linked answer question 73 and 74 :

A sequence x(n) has non-zero values as shown in the figure.



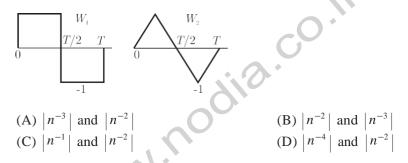
| Q. 74        | The Fourier transform of $y(2n)$ will be<br>(A) $e^{-j^2w}[\cos 4w + 2\cos 2w + 2]$<br>(C) $e^{-j_w}[\cos 2w + 2\cos w + 2]$ | (B) $\cos 2w + 2\cos w + 2$<br>(D) $e^{-j^2 w} [\cos 2w + 2\cos + 2]$ |
|--------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Q. 75        | For a signal $x(t)$ the Fourier transform is<br>of $X(3f + 2)$ is given by                                                   | X(f). Then the inverse Fourier transform                              |
|              | (A) $\frac{1}{2}x \frac{t}{2}je^{j3pt}$                                                                                      | (B) $\frac{1}{3}x^{-\frac{t}{3}}je^{-\frac{j4pt}{3}}$                 |
|              | (C) $3x(3t)e^{-j4pt}$                                                                                                        | (D) $x(3t+2)$                                                         |
|              | 2004                                                                                                                         | ONE MARK                                                              |
| Q. 76        | above system is                                                                                                              | here $u[n]$ is the unit step sequence. The                            |
|              | (A) stable but not causal                                                                                                    | (B) stable and causal                                                 |
|              | (C) causal but unstable                                                                                                      | (D) unstable and not causal                                           |
| Q. 77        | The <i>z</i> -transform of a system is $H(z) = z$<br>impulse response of the system is (A)                                   |                                                                       |
|              | $(0.2)^n u[n]$                                                                                                               | (B) $(0.2)^n u[-n-1]$                                                 |
|              | (C) $-(0.2)^n u[n]$                                                                                                          | (D) $-(0.2)^n u[-n-1]$                                                |
| Q. 78        | The Fourier transform of a conjugate symmetry                                                                                | netric function is always                                             |
|              | (A) imaginary                                                                                                                | (B) conjugate anti-symmetric                                          |
|              | (C) real                                                                                                                     | (D) conjugate symmetric                                               |
|              | 2004                                                                                                                         | TWO MARKS                                                             |
| Q. 79        | Consider the sequence $x[n] = [-4 - j5]$<br>part of the sequence is                                                          | 51 + j25]. The conjugate anti-symmetric                               |
|              | (A) $[-4-j2.5, j2, 4-j2.5]$                                                                                                  | (B) $[-j2.5, 1, j2.5]$                                                |
|              | (C) $[-j2.5, j2, 0]$                                                                                                         | (D) [-4, 1, 4]                                                        |
| Q. 80        | A causal LTI system is described by the                                                                                      | difference equation                                                   |
|              | 2y[n] = ay[n-2] - 2x[n]                                                                                                      | •                                                                     |
|              | The system is stable only if                                                                                                 |                                                                       |
|              | (A) $ a  = 2,  b  < 2$                                                                                                       | (B) $ a  \geq 2, b \geq 2$                                            |
|              | (C) $ a  < 2$ , any value of b                                                                                               | (D) $ b  < 2$ , any value of $a$                                      |
| <b>Q.</b> 81 | The impulse response $h[n]$ of a linear tin<br>$-2\sqrt{2}$ $n=1$                                                            |                                                                       |
|              | $h[n] = 42, \qquad n = 2$                                                                                                    |                                                                       |
|              | $n[n] - 4 \mathbf{x} \qquad n - 2$ $0 \qquad \text{otherw}$                                                                  |                                                                       |
|              | If the input to the above system is the sequen                                                                               | $ce^{ip^{n/4}}$ , then the output is                                  |
|              | (A) $4\sqrt[4]{e^{jpn/4}}$                                                                                                   | (B) $4\sqrt{2} e^{-jpn/4}$                                            |
|              | (C) $4e^{jpn/4}$                                                                                                             | (D) $-4e^{jp^{n/4}}$                                                  |
|              |                                                                                                                              |                                                                       |

**Q. 82** Let x(t) and y(t) with Fourier transforms F(f) and Y(f) respectively be related as shown in Fig. Then Y(f) is



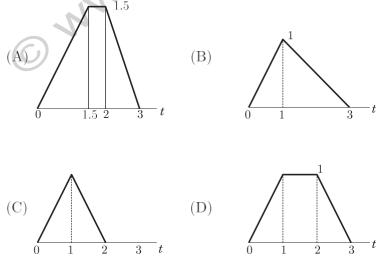
x(n) n \$1  $y(n) = *0, \quad n = 0$ x(n + 1) n #-1 where x (n) is the input and y (n) is the output. The above system has the properties
(A) P, S but not Q, R
(B) P, Q, S but not R
(C) P, Q, R, S
(D) Q, R, S but not P

#### Common Data For Q. 88 & 89 :


|       | The system under consideration is an RC I<br>W and $C = 1.0 m$ F.                                                                                                                                                                                            | ow-pass filter (RC-LPF) with $R = 1$ k                                          |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Q. 88 | Let $H(f)$ denote the frequency response of                                                                                                                                                                                                                  | the RC-LPF. Let $f_1$ be the highest                                            |
|       | frequency such that $0 \# f \mid \parallel \# f_1 \frac{ H(f_1) }{H(0)} $<br>(A) 324.8                                                                                                                                                                       |                                                                                 |
|       | (C) 52.2                                                                                                                                                                                                                                                     | (D) 104.4                                                                       |
| Q. 89 | Let $t_g(f)$ be the group delay function of the                                                                                                                                                                                                              | ne given RC-LPF and $f_2 = 100$ Hz. Then                                        |
|       | $t_g(f_2)$ in ms, is                                                                                                                                                                                                                                         | -O.'                                                                            |
|       | (A) 0.717                                                                                                                                                                                                                                                    | (B) 7.17                                                                        |
|       | (C) 71.7                                                                                                                                                                                                                                                     | (D) 4.505                                                                       |
|       | Ale                                                                                                                                                                                                                                                          |                                                                                 |
|       | 2002                                                                                                                                                                                                                                                         | ONE MARK                                                                        |
| Q. 90 | Convolution of $x (t + 5)$ with impulse f                                                                                                                                                                                                                    | unction $d(t-7)$ is equal to                                                    |
|       | $(\Delta) r(t-12)$                                                                                                                                                                                                                                           | (B) $x(t + 12)$                                                                 |
|       | (C) $x(t-2)$                                                                                                                                                                                                                                                 | (D) $x(t+2)$                                                                    |
|       |                                                                                                                                                                                                                                                              |                                                                                 |
| Q. 91 | Which of the following cannot be the Fourier $(A) = (1 + 2)$                                                                                                                                                                                                 |                                                                                 |
|       | $(A) x(t) = 2\cos t + 3\cos 3t$                                                                                                                                                                                                                              | (B) $x(t) = 2\cos pt + 7\cos t$<br>(D) $x(t) = 2\cos 1.5\pi t + \sin 2.5\pi t$  |
|       | (C) $x(t) = \cos t + 0.5$                                                                                                                                                                                                                                    | (D) $x(t) = 2\cos 1.5pt + \sin 3.5pt$                                           |
| Q. 92 | The Fourier transform $F\{e^{-1}u(t)\}$ is equ                                                                                                                                                                                                               | al to $\frac{1}{1+j2pf}$ . Therefore, $F \cdot \frac{1}{1+j2pt}$ is             |
|       | (A) $e^f u(f)$                                                                                                                                                                                                                                               | $\begin{array}{c} 1 + j2pf & 1 + j2pt \\ \text{(B) } e^{-f} u(f) & \end{array}$ |
|       | (C) $e^f u(-f)$                                                                                                                                                                                                                                              | (D) $e^{-f}u(-f)$                                                               |
| Q. 93 | A linear phase channel with phase delay $T_p = T_g = constant$<br>(A) $T_p = T_g = constant$<br>(B) $T_p \setminus f$ and $T_g \setminus f$<br>(C) $T_p = constant$ and $T_g \setminus f(f \text{ denote ff})$<br>(D) $T_p \setminus f$ and $T_p = constant$ |                                                                                 |
|       | 2002                                                                                                                                                                                                                                                         | TWO MARKS                                                                       |
| 0.94  |                                                                                                                                                                                                                                                              |                                                                                 |
| Q. 94 | The Laplace transform of continuous - tim<br>Fourier transform of this signal exists, the                                                                                                                                                                    | 3 3 2                                                                           |
|       | (A) $e^{2t}u(t) - 2e^{-t}u(t)$                                                                                                                                                                                                                               | (B) $-e^{2t}u(-t) + 2e^{-t}u(t)$                                                |
|       | (C) $-e^{2t}u(-t) - 2e^{-t}u(t)$                                                                                                                                                                                                                             | (D) $e^{2t}u(-t) - 2e^{-t}u(t)$                                                 |
|       |                                                                                                                                                                                                                                                              |                                                                                 |

| Q. 95        | If the impulse response of discrete - time system $ish[n] = -5^n u[-n-1]$ , then the system function $H(z)$ is equal to |                                                               |  |  |
|--------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--|--|
|              | system function $H(z)$ is equal to<br>(A) $\frac{-z}{z-5}$ and the system is stable                                     | $(B) \xrightarrow{Z}$ and the system is stable                |  |  |
|              |                                                                                                                         | (B) $\frac{z}{z-5}$ and the system is stable                  |  |  |
|              | (C) $\frac{-z}{z-5}$ and the system is unstable                                                                         | (D) $\frac{z}{z-5}$ and the system is unstable                |  |  |
|              | 2001                                                                                                                    | ONE MARK                                                      |  |  |
| <b>Q.</b> 96 | The transfer function of a system is                                                                                    | given by $H(s) = \frac{1}{s^2 (s-2)}$ . The impulse           |  |  |
|              | response of the system is                                                                                               |                                                               |  |  |
|              | (A) $(t^2 * e^{-2t}) u(t)$                                                                                              | (B) $(t^* e^{2t}) u(t)$<br>(D) $(te^{-2t}) u(t)$              |  |  |
|              | (C) $(te^{-2}t)u(t)$                                                                                                    | (D) $(te^{-2t})u(t)$                                          |  |  |
| Q. 97        | The region of convergence of the $z - t$                                                                                | ransform of a unit step function is                           |  |  |
|              | (A) $ z \ge 1$                                                                                                          | (B) $ z  \le 1$                                               |  |  |
|              | (C) (Real part of $z$ ) > 0                                                                                             | (D) (Real part of $z$ ) <0                                    |  |  |
| Q. 98        | Let $d(t)$ denote the delta function. The                                                                               | he value of the integral $\#^{3}d(t)\cosh\frac{3t}{2} dt $ is |  |  |
|              | (A) 1                                                                                                                   |                                                               |  |  |
|              | (C) 0                                                                                                                   | (B) $-1$ -3 2<br>(D) $\frac{p}{2}$                            |  |  |
| Q. 99        | If a signal $f(t)$ has energy $E$ , the energy o                                                                        |                                                               |  |  |
| QI UU        | (A) 1                                                                                                                   |                                                               |  |  |
|              | (C) 2 <i>E</i>                                                                                                          | (B) <i>E</i> /2<br>(D) 4 <i>E</i>                             |  |  |
|              |                                                                                                                         |                                                               |  |  |
|              | 2001                                                                                                                    | TWO MARKS                                                     |  |  |
| Q. 100       | The impulse response functions of four lir                                                                              | near systems S1, S2, S3, S4 are given                         |  |  |
|              | The impulse response functions of four linear systems S1, S2, S3, S4 are given respectively by                          |                                                               |  |  |
|              | $h_1(t) = 1, h_2(t) = u(t), h_3(t) = \frac{u}{t}$                                                                       | $h_4(t) = e^{-3t}u(t)$                                        |  |  |
|              |                                                                                                                         | h of these systems is time invariant, causal,                 |  |  |
|              | and stable?                                                                                                             |                                                               |  |  |
|              | (A) S1                                                                                                                  | (B) S2                                                        |  |  |
|              | (C) S3                                                                                                                  | (D) S4                                                        |  |  |
|              |                                                                                                                         |                                                               |  |  |
|              | 2000                                                                                                                    | ONE MARK                                                      |  |  |
| Q. 101       | Given that $L[f(t)] = \frac{s+2}{s^2+1}$ , $L[g(t)] = \frac{s+2}{t}$                                                    | $\frac{s^2+1}{(s+2)}$ and $h(t) = \#_0^t f(T)g(t-T) dT$ .     |  |  |
|              | $L\left[h\left(t ight) ight]$ is                                                                                        |                                                               |  |  |
|              | (A) $\frac{s^2 + 1}{s + 3}$                                                                                             | (B) $\frac{1}{s+3}$                                           |  |  |
|              | 3 - 5                                                                                                                   | <i>s</i> + 3                                                  |  |  |
|              | (C) $\frac{s^2 + 1}{(s+3)(s+2)} + \frac{s+2}{s^2 + 1}$                                                                  | (D) None of the above                                         |  |  |
| Q. 102       | The Fourier Transform of the signal $x(t)$                                                                              | $e^{-3t^2}$ is of the following form, where A                 |  |  |
|              | and B are constants :<br>$(A) = A = \begin{bmatrix} B & f \end{bmatrix}$                                                | $(\mathbf{D}) \leftarrow Bf$                                  |  |  |
|              | $(A)  Ae^{-B[f]}$                                                                                                       | (B) $Ae^{-Bf^2}$                                              |  |  |
|              | (C) $A + B f^2$                                                                                                         | (D) $Ae^{-Bf}$                                                |  |  |

| Q. 103 | A system with an input $x(t)$ and outp<br>y(t) = tx(t). This system is                                                                     | ut $y(t)$ is described by the relations : |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
|        | (A) linear and time - invariant                                                                                                            | (B) linear and time varying               |
|        | (C) non - linear and time - invariant                                                                                                      | (D) non - linear and time - varying       |
| Q. 104 | A linear time invariant system has an im<br>conditions are zero and the input is $e^{3t}$ , (A) $e^{3t} - e^{2t}$<br>(C) $e^{3t} + e^{2t}$ |                                           |
|        | 2000                                                                                                                                       | TWO MARKS                                 |


Q. 105

One period (0, T) each of two periodic waveforms  $W_1$  and  $W_2$  are shown in the figure. The magnitudes of the  $n^{th}$  Fourier series coefficients of  $W_1$  and  $W_2$ , for n \$ 1, n odd, are respectively proportional to



**Q. 106** 

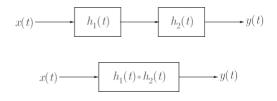
Let u(t) be the step function. Which of the waveforms in the figure corresponds to the convolution of u(t) - u(t-1) with u(t) - u(t-2)?



Q. 107

A system has a phase response given by f(w), where w is the angular frequency. The phase delay and group delay at  $w = w_0$  are respectively given by

(A) 
$$-\frac{f(w_0)}{w_0}$$
,  $-\frac{df(w)}{dw}\Big|_{w=w_0}$   
(B)  $f(w)$ ,  $-\frac{d^2 f(w_0)}{dw^2}\Big|_{w=w_0}$   
(C)  $\frac{w_0}{f(w_0)}$ ,  $-\frac{df(w)}{d(w)}\Big|_{w=w_0}$   
(D)  $w_0 f(w)$ ,  $\#_{-3}^{w_0} f(I)$ 


|               | 1999                                                                                                                                                          | ONE MARK                                                                                                                                                                                                                  |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Q. 108        | The z -transform $F(z)$ of the function $f(z)$                                                                                                                | $nT$ ) = $a^{nT}$ is                                                                                                                                                                                                      |
|               | (A) $\frac{z}{z-a^T}$                                                                                                                                         | (B) $\frac{z}{z+a^T}$                                                                                                                                                                                                     |
|               | (C) $\frac{z}{z - a^{-T}}$                                                                                                                                    | (D) $\frac{z}{z+a^{-T}}$                                                                                                                                                                                                  |
| Q. 109        | If $[f(t)] = F(s)$ , then $[f(t-T)]$ is equal to                                                                                                              |                                                                                                                                                                                                                           |
|               | (A) $e^{sT}F(s)$                                                                                                                                              | (B) $e^{-sT}F(s)$                                                                                                                                                                                                         |
|               | (C) $\frac{F(s)}{1 - e^{sT}}$                                                                                                                                 | (D) $\frac{F(s)}{1 - e^{-sT}}$                                                                                                                                                                                            |
| Q. 110        | <ul><li><i>t</i>, then X (W) is</li><li>(A) a real and even function of W</li><li>(B) a imaginary and odd function of W</li></ul>                             | (w). If <i>x</i> ( <i>t</i> ) is a real and odd function of                                                                                                                                                               |
|               | <ul><li>(C) an imaginary and even function of W</li><li>(D) a real and odd function of W</li></ul>                                                            |                                                                                                                                                                                                                           |
|               | (D) a real and odd function of w                                                                                                                              |                                                                                                                                                                                                                           |
|               | 1999                                                                                                                                                          | TWO MARKS                                                                                                                                                                                                                 |
| Q. 111        | The Fourier series representation of an in                                                                                                                    | pulse train denoted by                                                                                                                                                                                                    |
|               | $s(t) = \int_{n=-3}^{3} d(t - nT_{0}) \text{ is given}$ $(A)^{-\frac{1}{2}} \neq \exp -\frac{j2pnt}{T_{0}}$ $(C)^{-\frac{1}{2}} \neq \exp \frac{jpnt}{T_{0}}$ | $(B) \stackrel{\underline{1}}{\underline{7}} \stackrel{\underline{7}}{\underline{7}} \exp -\frac{jDnt}{T_0}$ $(D) \stackrel{\underline{1}}{\underline{7}} \stackrel{\underline{7}}{\underline{7}} \exp \frac{j2Dnt}{T_0}$ |
| Q. 112        | The z -transform of a signal is given by C<br>(A) $1/4$<br>(C) 1.0                                                                                            | $f(z) = \frac{1z^{-1}(1-z^{-1})}{4(1-z^{-1})^2}$ . Its final value is<br>(B) zero<br>(D) infinity<br>ONE MARK                                                                                                             |
| Q. 113        | If $F(s) = \frac{w}{s^2 + w^2}$ , then the value of Limf(                                                                                                     | (t)                                                                                                                                                                                                                       |
|               | $s^2 + W^2$ this<br>(A) cannot be determined                                                                                                                  | (B) is zero                                                                                                                                                                                                               |
|               | (C) is unity                                                                                                                                                  | (D) is infinite                                                                                                                                                                                                           |
| <b>Q. 114</b> | The trigonometric Fourier series of a even the (A) cosine terms (C) cosine and sine terms                                                                     | <ul><li>ime function can have only</li><li>(B) sine terms</li><li>(D) d.c and cosine terms</li></ul>                                                                                                                      |
| Q. 115        | A periodic signal $x(t)$ of period $T_0$ is give<br>The dc component of $x(t)$ is<br>(A) $\frac{T_1}{T_0}$<br>(C) $\frac{2T_1}{T_0}$                          | n by $x(t) = \frac{1}{0},  \begin{vmatrix} t \\ s \end{vmatrix} < T_{1}$<br>(B) $\frac{T_{1}}{2T_{0}}$<br>(D) $\frac{T_{0}}{T_{1}}$                                                                                       |

| <b>Q.</b> 116 | function $u(t)$ . For $t > 0$ , the response                                | hear time invariant system is the unit step<br>e of the system to an excitation $e^{-at}u(t), a > 0$ |
|---------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
|               | will be (A) $ae^{-at}$                                                      | (B) $(1/a)(1-a^{-at})$                                                                               |
|               | (A) $ae^{(A)}$<br>(C) $a(1-e^{-at})$                                        | (B) $(1/a)(1-e^{-at})$<br>(D) $1-e^{-at}$                                                            |
|               | (c) $u(1-e^{-1})$                                                           | $(D) \ 1-e$                                                                                          |
| Q. 117        | The z-transform of the time function                                        | $\int_{k=0}^{3} d(n-k)$ is                                                                           |
|               | (A) $\frac{z-1}{z}$                                                         | (B) $\frac{z}{z-1}$<br>(z-1) <sup>2</sup>                                                            |
|               | (C) $(z-1)^2$                                                               | (D) $\frac{(z-1)^2}{z}$                                                                              |
| Q. 118        |                                                                             | es $A_1, A_2, A_3, \dots$ of the fundamental, second                                                 |
|               | harmonic, third harmonic, respective<br>(A) $\frac{A_2 + A_3 + \dots}{A_1}$ | (B) $\frac{A_2^2 + A_3^2 + \dots}{A_1}$                                                              |
|               | (C) $-A^{\frac{A^2}{2} + A^2}_{+A^2 + A^2 + \dots}$                         | (D) $e^{A_2^2 + A_1^2 + \dots m}$                                                                    |
| <b>Q.</b> 119 | • • • •                                                                     | t) is X (f). The Fourier transform of $\frac{dX(t)}{dX(t)}$                                          |
|               | will be                                                                     | df                                                                                                   |
|               | (A) $\frac{dX(f)}{df}$                                                      | (B) $j2pfX(f)$                                                                                       |
|               | (C) $jfX(f)$                                                                | (B) $j2pfX(f)$<br>(D) $\frac{X(f)}{if}$                                                              |
|               | (C) JJA () )<br>1997                                                        | 55                                                                                                   |
|               | 1997                                                                        | ONE MARK                                                                                             |
| Q. 120        | The function $f(t)$ has the Fourier Trans                                   | form $g$ (W). The Fourier Transform                                                                  |
|               | $ff(t) g(t) e^{-\frac{3}{4}} g(t) e^{-j_v}$                                 | $v^t dt_0$ is                                                                                        |
|               | $(\Lambda) \frac{1}{f(M)}$ -3                                               |                                                                                                      |
|               |                                                                             | (B) $\frac{1}{2p}f(-w)$                                                                              |
|               | (C) $2pf(-w)$                                                               | (D) None of the above                                                                                |
| Q. 121        | The Laplace Transform of $e^{\alpha^t} \cos(\alpha t)$ i                    | s equal to                                                                                           |
|               | $(A)\frac{(s-\alpha)}{(s-\alpha)^2+\alpha^2}$                               | (B) $\frac{(s+\alpha)}{(s-\alpha)^2+\alpha^2}$                                                       |
|               |                                                                             |                                                                                                      |
|               | (C) $\frac{1}{(s-\alpha)^2}$                                                | (D) None of the above                                                                                |
|               | 1996                                                                        | ONE MARK                                                                                             |
| Q. 122        | The trigonometric Fourier series of an e                                    | even function of time does not have the                                                              |
|               | (A) dc term                                                                 | (B) cosine terms                                                                                     |
|               | (C) sine terms                                                              | (D) odd harmonic terms                                                                               |
| Q. 123        | The Fourier transform of a real valued t                                    | time signal has                                                                                      |
|               | (A) odd symmetry                                                            | (B) even symmetry                                                                                    |
|               | (C) conjugate symmetry                                                      | (D) no symmetry                                                                                      |
|               | ****                                                                        | ***                                                                                                  |

# SOLUTIONS

Option (C) is correct.

If the two systems with impulse response  $h\uparrow$   $h\uparrow$  and  $h\land$   $h\uparrow$  are connected in cascaded configuration as shown in figure, then the overall response of the system is the convolution of the individual impulse responses.



c0.11

Sol. 2

Sol. 1

Option (C) is correct. Given, the input  $x^{t}h = u^{t} - 1h$ 

It's Laplace transform is

$$X^{h}sh = \frac{e^{-s}}{s}$$

The impulse response of system is given

 $h^t h = t u^t h$ 

Its Laplace transform is

$$H_{\Lambda,\mathfrak{h}} = \frac{1}{\mathfrak{s}^2}$$

Hence, the overall response at the output is

$$Y \wedge s h = X \wedge s h H \wedge s h = \frac{e^{-s}}{s^3}$$

Its inverse Laplace transform is

$$y^{t} h = \frac{t^{t} - 1h^{2}}{2}u^{t} - 1h$$

Sol. 3

Option (A) is correct. Given, the signal

$$v^t h = 30 \sin 100t + 10 \cos 300t + 6 \sin 500t + p h$$

So we have

$$w_1 = 100 \text{ rad /s}$$
,  $w_2 = 300 \text{ rad /s}$  and  $w_3 = 500 \text{ rad /s}$ 

Therefore, the respective time periods are  $T_1 = \frac{2p}{w_1} = \frac{2p}{2p} \sec t_2 = \frac{2p}{w_2} \sec t_3 = \frac{2p}{2p} \sec t_3 = \frac{2p}{500} \{100} \t_3 = \frac$ 

$$LCM 2p, 2p$$
 h

L.C.M. 
$$\Lambda T_1, T_2T_1h = HCF \Lambda 100, 300, 500h$$
  
 $T_0 = \frac{2p}{100}$ 

or,

Hence, the fundamental frequency in rad / sec is  $w_0 = \frac{2p}{10} = 100$  rad /s

Sol. 4 Option (A) is correct.

Given, the maximum frequency of the band-limited signal

#### $f_m = 5 \text{ kHz}$

According to the Nyquist sampling theorem, the sampling frequency must be greater than the Nyquist frequency which is given as

$$f_N = 2f_m = 2 \# 5 = 10 \text{ kHz}$$

So, the sampling frequency  $f_s$  must satisfy

$$f_s \$ f_N$$
  
$$f_s \$ 10 \text{ kHz}$$

only the option (A) doesn't satisfy the condition therefore, 5 kHz is not a valid sampling frequency.

Sol. 5 Option (C) is correct.

> For a system to be casual, the R.O.C of system transfer function Hh which is rational should be in the right half plane and to the right of the right most pole. For the stability of LTI system. All poles of the system should lie in the left half of S -plane and no repeated pole should be on imaginary axis. Hence, options (A), (B), (D) satisfies an LTI system stability and causality both.

But, Option (C) is not true for the stable system as,  $S \mid = 1$  have one pole in right hand plane also.

Sol. 6

Sol. 7

Option (B) is correct. The Laplace transform of unit step fun<sup>n</sup> is

 $U^{s}h = sc\frac{1}{s^{2}}m - y^{0}h$ 

 $U^{s} h = \frac{1}{2}$ So, the O / P of the system is given as  $Y^s h = b \frac{1}{s} |b \frac{1}{s}| = \frac{1}{s^2}$ For zero initial condition, we check

 $u^t h = \frac{dy^t h}{dt}$  $U^{s}h = SY^{s}h - y^{0}h$ 

& &

or.

 $v^0h = 0h$ 

Hence, the O / P is correct which is  $Y_{\Lambda} = \frac{1}{s^2}$ 

its inverse Laplace transform is given by  $y^t h = tu^t h$ 

 $U^{s} h = \frac{1}{s}$ 

No Option is correct.

The matched filter is characterized by a frequency response that is given as  $H_{\Lambda}f_{h} = G *_{\Lambda}f_{h}\exp_{\Lambda}-j2pfT_{h}$ where  $g^{h}h_{\mu} = G^{h}G^{h}h$ 

Now, consider a filter matched to a known signal  $g^{h}$  h. The fourier transform of the resulting matched filter output  $g^{th}$  will be

$$\begin{aligned} & G_0^{A}fh = H^{A}fhG^{A}fh \triangleq G *^{A}fhG^{A}fhexp^{-j}2pfT h \\ &= |G^{A}fh|^2 \exp(-j2pfT)h \end{aligned}$$

*T* is duration of  $g^t$  h

Sol. 8

Sol. 9

Sol. 10

Assume  $\exp^{-j2pfT}h = 1$  $G_0 \wedge f \mathbf{h} = G_f \mathbf{i}^2$ So, Since, the given Gaussian function is  $g^{th} = e^{-pt^2}$ Fourier transform of this signal will be  $g^{h}th = e^{-pt^{2}} \xrightarrow{f} e^{-pf^{2}} = G^{h}fh$ Therefore, output of the matched filter is  $G_0 \wedge f h = |e^{-pf^2}|^2$ Option (B) is correct. Given, the impulse response of continuous time system  $h^{t}h = d^{t} - h + d^{t} - 3h$ From the convolution property, we know  $x^{\uparrow} \ddagger dt \triangleq t_0 = hx t - h_0$ h So, for the input  $x^t h = u^t h$  (Unit step fun<sup>n</sup>) The output of the system is obtained as  $y^{t}h = u^{t}h * h^{t}h = u^{t}h * 6d^{t} - 1h + d^{t} - 3h^{t}$  $= u^{t} - 1h + u^{t} - 3h$   $y^{2}h = u^{2} - 1h + u^{2} - 3h = 1$ purect At t = 2Option (B) is correct. Given, the differential equation  $\frac{d^2 y}{dt} + 5 \frac{dy}{dt} + 6y^t h = x^t h$ Taking its Laplace transform with zero initial conditions, we have Now, the input signal is  $x^{h} h = {* \atop 0} 0 < t < 2$ otherwise  $x^{h} h = u^{h} h u^{h} - 2h$ i.e., Taking its Laplace transform, we obtain  $X^sh = \frac{1}{s} - \frac{e^{-2s}}{s} = \frac{1 - e^{-2s}}{s}$ Substituting it in equation (1) we get  $s^{2} + \frac{5}{5s} \frac{h}{s} = \frac{1 - e^{2s}}{s^{2} + 5s + 6h} = \frac{1 - e^{-2s}}{s^{2} + 5s + 6h} = \frac{1 - e^{-2s}}{s^{2} + 5s + 6h}$ Option (D) is correct. The solution of a system described by a linear, constant coefficient, ordinary, first order differential equation with forcing function  $x \neq h y t + h$  we can define a function relating  $x^t$  h and  $y^t$  h as below

$$P\frac{dy}{dt} + Qy + K = x^t h$$

where P, Q, K are constant. Taking the Laplace transform both the sides, we get

Now, the solutions becomes

 $y_1^{th} = -2y_t^{th}$ 

So, Eq. (1) changes to

$$P s Y_1 \land s h - P y_1 \land 0h + Q Y_1 \land sh = X_1 \land s h$$

or,

0

$$-2PSY^{h}h - Py_{1}^{h}h - 2QY_{1}^{h}h = X_{1}^{h}h \qquad (2)$$

Comparing Eq. (1) and (2), we conclude that

 $Y_1 \wedge s \models -2 Y \wedge h$ 

$$X_1^{h} sh = -2X^{h} sh$$
  
 $y_1^{0} h = -2y 0h$ 

Which makes the two equations to be same. Hence, we require to change the initial condition to  $-2y \ 0$  hand the forcing equation to  $-2x \ t \land h$ 

Sol. 11

Given, the DFT of vector  $8a \ b \ c \ dB$  as

D.F.T.%
$$a b c dB = a b g dB$$

Also, we have

Z

Now, we know that

For matrix circular convolution, we know

$$x6n@*h6n@ = Sh_1 h_0 h_2 W_{S}^{R} v_0 S_{X}^{R} w_0 S_{A}^{R} h_0 h_2 W_{A}^{R} w_0 S_{A}^{R} w_0$$

where  $|x_{0}|_{\mathcal{X}}$ ,  $x_{1}$  are three point signals for  $x n \in \mathbb{Q}$  and similarly for  $h \notin n(0, h_{0}, h_{1})$ and  $h_{2}$  are three point signals. Comparing this transformation to Eq(1), we get

So,

Sol. 12 Option (D) is correct.

Using *s* -domain differentiation property of Laplace transform.

If

$$f(t) \xleftarrow{\mathsf{L}} F(s)$$
$$tf(t) \xleftarrow{\mathsf{L}} -\frac{dF(s)}{ds}$$

So,

$$L[tf(t)] = \frac{-d}{ds} \frac{1}{;s^2 + s + 1^{\text{E}}} = \frac{2s + 1}{(s^2 + s + 1)^2}$$

Sol. 13

Option (C) is correct.  

$$x [n] = b_3 \frac{1}{3} | {}^n - b_2 \frac{1}{3} | {}^n u [n]$$

$$x[n] = b_1 \frac{1}{3} | {}^n u[n] + b_1 \frac{1}{3} | {}^{-n} u[-n-1] - b_2 \frac{1}{3} | {}^n u(n)$$

Taking z -transform

$$X \, 6z \, @ = \int_{n=-3}^{3} b \frac{1}{3} \prod_{i=-n}^{n} u[n] + \int_{n=-3}^{3} b \frac{1}{3} \prod_{i=-n}^{n} z^{-n} u[-n-1] - \int_{n=-3}^{3} b \frac{1}{2} \prod_{i=-n}^{n} u[n]$$
  
$$= \int_{n=3}^{3} b \frac{1}{3} \prod_{i=-n}^{n} z^{-n} + \int_{n=-3}^{-1} b \frac{1}{3} \prod_{i=-n}^{n} z^{-n} - \int_{n=-3}^{3} b \frac{1}{2} \prod_{i=-n}^{n} z^{-n}$$
  
$$= \int_{n=3}^{3} b \frac{1}{2} \prod_{i=-n}^{n} + \int_{n=-3}^{n} b \frac{1}{2} \prod_{i=-n}^{n} z^{-n} - \int_{n=-3}^{3} b \frac{1}{2} \prod_{i=-n}^{n} z^{-n}$$
  
$$= \int_{n=3}^{3} b \frac{1}{2} \prod_{i=-n}^{n} + \int_{n=-3}^{n} b \frac{1}{2} \prod_{i=-n}^{n} z^{-n} - \int_{n=-3}^{3} b \frac{1}{2} \prod_{i=-n}^{n} z^{-n}$$
  
$$= \int_{n=-3}^{3} b \frac{1}{2} \prod_{i=-n}^{n} z^{-n} - \int_{n=-3}^{3} b \frac{1}{2} \prod_{i=-n}^{n} z^{-n} - \int_{n=-3}^{3} b \frac{1}{2} \prod_{i=-n}^{n} z^{-n} - \int_{n=-3}^{n} b \frac{1}{2} \prod_{i=-n}^{n} z^{-n} - \int_{n=-3}^{$$

Series I converges if  $\left|\frac{1}{3z}\right| < 1$  or  $|z| > \frac{1}{3}$ Series II converges if  $\left|\frac{1}{3}z\right| < 1$  or  $\frac{1}{3} < |3|$ Series III converges if  $\left|\frac{1}{2z}\right| < 1$  or  $|z| > \frac{1}{2}$ Region of convergence of *X*(*z*) will be intersection of above three So, ROC :  $\frac{1}{2} < \frac{1}{3} < |3|$ 

Sol. 14

$$y(t) = \# x(T)\cos(3T) dT$$
-3

**Time Invariance :** 

Let,

$$x(t) = d(t) y(t) = \# d(t) \cos(3t) dt = u(t) \cos(0) = u(t) -3$$

For a delayed input  $(t - t_0)$  output is

$$y(t,t_0) = \# \frac{d}{d}(t-t_0)\cos(3t) dt = u(t)\cos(3t_0)$$

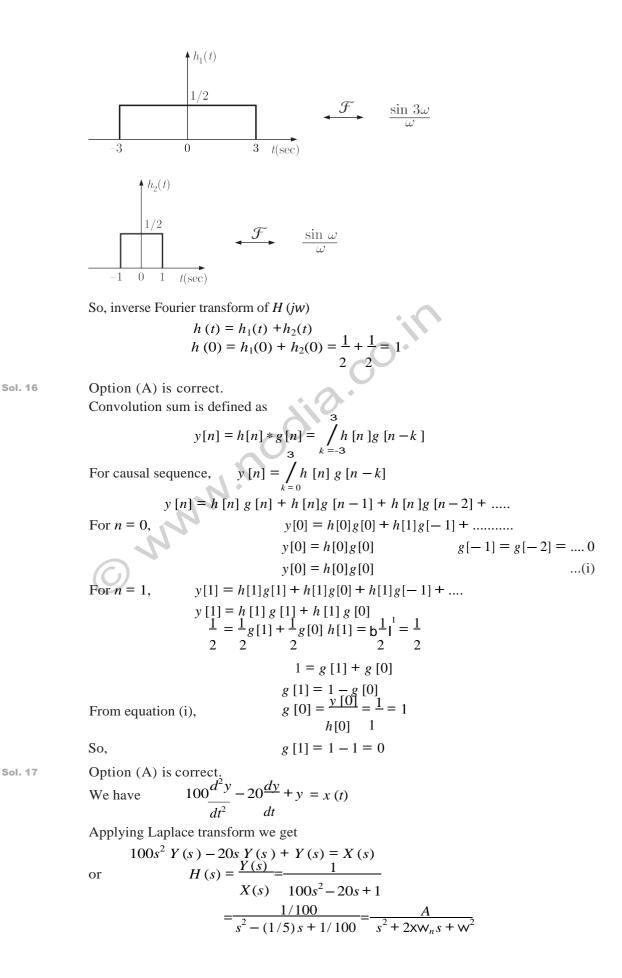
Delayed output,

$$y(t - t_0) = u(t - t_0)$$
  
y(t, t\_0) ! y(t - t\_0)

System is not time invariant.

**Stability :** 

Consider a bounded input 
$$x(t) = \cos 3t$$
  
 $y(t) = \#_{t} \cos^{2} 3t = \#_{t} \frac{1-c}{1-c}$   
 $-3 \qquad -3$   
As  $t$  '' 3,  $y(t)$  '' 3 (unbounded)


Option (C) is correct.

$$\begin{array}{c} \#_{t} \cos^{2} 3t = \#_{1} \frac{1 - \cos 6t}{1 - \cos 6t} \\ -3 & -3 & 2 \\ 3 \text{ (unbounded)} \end{array} = \frac{1}{2} \#_{1}^{t} - \frac{1}{2} \#_{1}^{t} \\ -\frac{1}{3} dt \\ -\frac{1}{3} dt \\ -\frac{1}{3} \cos 6t \, dt \\ \text{System is not stable.} \end{array}$$

Sol. 15

$$H(jw) = \frac{(2\cos w)(\sin 2w)}{w} = \frac{\sin 3w}{w} + \frac{\sin w}{w}$$

We know that inverse Fourier transform of sin *c* function is a rectangular function.



|         | Here $w_n = 1 / 10$ and $2xw_n = -1 / 5$ giving $x = -1$                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Roots are $s = 1 / 10$ , $1 / 10$ which lie on Right side of s plane thus unstable.                                                                                                                                                                                                                                                                                                                                                                                       |
| Col 49  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Sol. 18 | Option (C) is correct.<br>For an even function Fourier series contains dc term and cosine term (even and odd harmonics).                                                                                                                                                                                                                                                                                                                                                  |
| Sol. 19 | Option (B) is correct.                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|         | Function $h(n) = a^n u(n)$ stable if $a     < 1$ and Unstable if $a     H$ 1We We have<br>$h(n) = 2^n u(n-2);$<br>Here $a \neq 2$ therefore $h(n)$ is unstable and since $h(n) = 0$ for $n < 0$<br>Therefore $h(n)$ will be causal. So $h(n)$ is causal and not stable.                                                                                                                                                                                                   |
| Sol. 20 | Option (A) is correct.                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|         | Impulse response $= \frac{d}{dt}$ (step response)                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         | $=\frac{d}{dt}(1-e^{-\alpha^{t}})=0+\alpha e^{-\alpha^{t}}=\alpha e^{-\alpha^{t}}$                                                                                                                                                                                                                                                                                                                                                                                        |
| Sol. 21 | Option (D) is correct.                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|         | We have $x(t) = \exp(-2t)m(t) + s(t-6)$ and $h(t) = u(t)$                                                                                                                                                                                                                                                                                                                                                                                                                 |
|         | Taking Laplace Transform we get $1$                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         | $X(s) = b_{s+2} + e^{-s}$ and $H(s) = -\frac{s}{s}$                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         | Now $Y(s) = H(s) X(s)$                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|         | We have $x(t) = \exp(-2t)\operatorname{m}(t) + s(t-6)$ and $h(t) = u(t)$<br>Taking Laplace Transform we get<br>$X(s) = \operatorname{b}_{s} \frac{1}{+2} + e^{-6s}$ and $H(s) = \frac{1}{s}$<br>Now $Y(s) = H(s) X(s)$<br>$= \frac{1}{s} \frac{1}{s + 2} + e^{-6s} = \frac{1}{s(s+2)} + \frac{e^{-6s}}{s}$<br>or $Y(s) = \frac{1}{2s} - \frac{1}{2(s+2)} + \frac{e^{-6s}}{s}$<br>Thus $y(t) = 0.5[1 - \exp(-2t)]u(t) + u(t-6)$<br>Option (B) is correct.<br>y(n) = x(n-1) |
|         | $2s  2(s+2)  \overline{s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | Thus $y(t) = 0.5[1 - \exp(-2t)]u(t) + u(t-6)$                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Sol. 22 | Option (B) is correct.                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|         | y(n) = x(n-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         | or $Y(z) = z^{-1}X(z)$                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|         | or<br>y(n) = x(n-1)<br>$Y(z) = z^{-1}X(z)$<br>$\frac{Y(z)}{X(z)} = H(z) = z^{-1}$                                                                                                                                                                                                                                                                                                                                                                                         |
|         | Now $H_1(z)H_2(z) = z^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         | $c\frac{1-0.4z^{-1}}{1-0.6z^{-1}}MH_2(z) = z^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         | $H_2(z) = \frac{z^{-1}(1 - 0.6z^{-1})}{(1 - 0.4z^{-1})}$                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Sol. 23 | Option (B) is correct.<br>For 8 point DFT, $x^*[1 = x[7]; x^*[2] = x[6]; x^*[3] = x[5]$ and it is conjugate                                                                                                                                                                                                                                                                                                                                                               |
|         | symmetric about x [4], x [6] = 0; x [7] = $1 + j3$                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Sol. 24 | Option (A) is correct.                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|         | We know that $aZ^{!a} \xleftarrow{\text{Inverse } Z - \text{transform}} ad[n ! a]$                                                                                                                                                                                                                                                                                                                                                                                        |
|         | Given that $X(z) = 5z^2 + 4z^{-1} + 3$                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|         | Inverse z-transform $x[n] = 5d[n+2] + 4d[n-1] + 3d[n]$                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Sol. 25 | Option (C) is correct.                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|         | For a function $x(t)$ trigonometric fourier series is                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

$$x(t) = A_o + \prod_{n=1}^{3} (A_n \cos nwt + B_n \sin nwt)$$

Where,

$$A_{o} \frac{1}{T} \underset{T_{o}}{\#} x(t) dt \qquad T_{0} \text{ ``fundamental period}$$

$$A_{n} = \frac{2}{T_{0}} \underset{T_{o}}{\#} x(t) \cos nwt dt$$

$$B_{n} = \frac{2}{T_{0}} \underset{T_{o}}{\#} x(t) \sin nwt dt$$

$$A_{n} = \frac{2}{T_{0}} \underset{T_{o}}{\#} x(t) \sin nwt dt$$

and

For an even function 
$$x(t)$$
,  $B_n = 0$ 

Since given function is even function so coefficient  $B_n = 0$ , only cosine and constant terms are present in its fourier series representation

Constant term 
$$A_{0} = \frac{1}{T} \#_{-T/4}^{3T/4} x(t) dt = \frac{1}{T} : \#_{-T/4}^{T/4} A dt + \#_{T/4}^{3T/4} - 2A dt ]$$
$$= \frac{1}{T} : \frac{TA}{2} - 2A \frac{T}{2} D = -\frac{A}{2}$$

Constant term is negative.

| Sol. 26 | Option (C) is correct.   | -0*                                                 |
|---------|--------------------------|-----------------------------------------------------|
|         | We have                  | $h_1[n] = d[n-1] or H_1[Z] = Z^{-1}$                |
|         | and                      | $h_2[n] = d[n-2]or H_2(Z) = Z^{-2}$                 |
|         | Response of cascaded sys |                                                     |
|         |                          | $H(z) = H_1(z) : H_2(z) = z^{-1} : z^{-2} = z^{-3}$ |
|         | or,                      | h[n] = d[n-3]                                       |
|         |                          |                                                     |

Sol. 27

Option (D) is correct.

For an N-point FET algorithm butterfly operates on one pair of samples and involves two complex addition and one complex multiplication.

Option (D) is correct. Sol. 28

We have

and

$$f(t) = \mathbf{L}^{-1} \frac{3s+1}{s^3+4s^2+(k-3)s^{\mathsf{E}}}$$
$$\lim_{t \text{ "3}} f(t) = 1$$

By final value theorem

$$\lim_{t \to 3} f(t) = \lim_{s \to 0} sF(s) = 1$$
$$\lim_{s \to 0} \frac{s \cdot (3s+1)}{s^3 + 4s^2 + (k-3)} = 1$$
$$\lim_{s \to 0} \frac{s \cdot (3s+1)}{s[s^2 + 4s + (k-3)]} = 1$$

k = 4

or

or

$$\frac{1}{k-3} = 1$$

Sol. 29

Option (B) is correct.  
System is described as  

$$\frac{d^{2}y(t)}{dt^{2}} + \frac{dt(t)}{4} + 3y(t) = 2\frac{dx(t)}{dt} + 4x(t)$$
Taking Laplace transform on both side of given equation  
 $s^{2}Y(s) + 4sY(s) + 3Y(s) = 2sX(s) + 4X(s)$   
 $(s^{2} + 4s + 3)Y(s) = 2(s + 2)X(s)s$ 

2)

Input

or,

Transfer function of the system

$$H(s) = \frac{Y(s)}{X(s)} = \frac{2(s+2)}{s^2+4s+3} = \frac{2(s+2)}{(s+3)(s+1)}$$
  
Input  
or,  

$$X(s) = \frac{1}{(s+2)}$$
  
Output  

$$Y(s) = H(s) : X(s) = \frac{2(s+2)}{(s+3)(s+1)} : \frac{1}{(s+3)(s+1)}$$

By Partial fraction

$$Y(s) = \frac{1}{s+1} - \frac{1}{s+3}$$

$$y(t) = (e^{-t} - e^{-3t})u(t)$$

Option (C) is correct.

We have 
$$H(z) = \frac{2 - \frac{3}{4}z^{-1}}{1 - \frac{3}{4}z^{-1} + \frac{1}{8}z^{-2}}$$

By partial fraction H(z) can be written as

$$H(z) = \frac{1}{\Lambda 1 - \frac{1}{2}z^{-1}} + \frac{1}{\Lambda 1 - \frac{1}{4}z^{-1}}$$

For ROC :  $|z| \ge 1/2$ 

$$h[n] = b\frac{1}{2} \int_{-\infty}^{n} u[n] + b\frac{1}{4} \int_{-\infty}^{n} u[n], n > 0 \qquad \frac{1}{1 - z^{-1}} = a^{n} u[n], |z \ge a$$

Thus system is causal. Since ROC of H(z) includes unit circle, so it is stable also. Hence  $S_1$  is True

For ROC :  $|z| < \frac{1}{4}$ 

$$h[n] = -b\frac{1}{2} \prod_{n=1}^{n} u[-n-1] + b\frac{1}{4} \prod_{n=1}^{n} u(n), |z| > \frac{1}{4}, |z| < \frac{1}{2}$$

System is not causal. ROC of H(z) does not include unity circle, so it is not stable and  $S_3$  is True

Sol. 31

Option (A) is correct.

The Fourier series of a real periodic function has only cosine terms if it is even and sine terms if it is odd.

Sol. 32 Option (B) is correct.

Given function is

$$f(t) = \sin^2 t + \cos 2t = \frac{1 - \cos 2t}{2} + \cos 2t = \frac{1 + 1}{2} \cos 2t$$

The function has a DC term and a cosine function. The frequency of cosine terms is

$$w = 2 = 2pf$$
"  $f = \frac{1}{p}$  Hz

The given function has frequency component at 0 and  $\frac{1}{2}$ p Hz.

Sol. 33

Option (A) is correct.  

$$x[n] = b\frac{1}{3} u(n) - b\frac{1}{2} u(-n-1)$$

Taking z transform we have

Sol. 30

|         |                            | $X(z) = \sum_{n=0}^{n=3} b \frac{1}{3} \mathbf{I}^{n} z^{-n} - \sum_{n=-3}^{n=-1} b \frac{1}{2} \mathbf{I}^{n} z^{-n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |                            | $= \int_{-\infty}^{n=3} b \frac{1}{3} z^{-1} \int_{-\infty}^{n} - \int_{-\infty}^{n=2} b \frac{1}{2} z^{-1} \int_{-\infty}^{n} b \frac{1}{2} z^{-1} \int_{-\infty}^{n$ |
|         | First term gives           | $= \int_{n=0}^{n=0} b \frac{1}{3} z^{-1} \mathbf{I}^{n} - \int_{n=-3}^{n=-3} b \frac{1}{2} z^{-1} \mathbf{I}^{n}$ $= \int_{n=0}^{n=-3} b \frac{1}{3} z^{-1} \mathbf{I}^{n} - \int_{n=-3}^{n=-3} b \frac{1}{2} z^{-1} \mathbf{I}^{n}$ $= \frac{1}{2} z^{-1} < 1  ::  \frac{1}{2} <  z $ $= \int_{n=0}^{n=-3} b \frac{1}{2} z^{-1} \mathbf{I}^{n}$ $= \int_{n=-3}^{n=-3} b \frac{1}{2} z^{-1} \mathbf{I}^{n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|         | Second term give           | $\frac{1}{2}z^{-1} > 1  \frac{1}{2} >  z $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         | Thus its ROC is            | the common ROC of both terms. that is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         |                            | $\frac{1}{3} <  z  < \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sol. 34 | Option (B) is c            | orrect.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         | By property of u           | nilateral Laplace transform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|         | TT C /····                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | Here function i            | s defined for $0 < T < t$ , Thus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         |                            | $\#_0^t f(T) \xleftarrow{L} \frac{F(s)}{s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Sol. 35 | Option (A) is c            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | We have $h(2) =$ follows : | = 1, $h(3) = -1$ otherwise $h(k) = 0$ . The diagram of response is as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         | ionows.                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | - <u>1</u>                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | 3                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | $0 \qquad 2$               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | It has the finite r        | nagnitude values. So it is a finite impulse response filter. Thus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         |                            | s not a low pass filter. So $S_1$ is false.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Sol. 36 | Option (B) is c            | orrect.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         |                            | For $t < 0$ . Thus system is non causal. Again any bounded input $x(t)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         | -                          | output <i>y</i> ( <i>t</i> ). Thus it is BIBO stable.<br>nclude that option (B) is correct.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Sol. 37 | Option (D) is c            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         | We have                    | $x[n] = \{1, 0, 2, 3\}$ and $N = 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|         |                            | $X[k] = \int_{n=0}^{N-1} x[n] e^{-j^2 p^{nkN}} k = 0, 1N - 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         | For $N = 4$ ,              | $X[k] = \int_{n=0}^{5} x[n] e^{-j^2 p^{nk/4}} k = 0, 1, \dots 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         | Now                        | $X[0] = \bigwedge_{n=0}^{3} x[n] = x[0] + x[1] + x[2] + x[3] = 1 + 0 + 2 + 3 = 6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         |                            | $x[1] = \int_{n=0}^{n-3} x[n]e^{-jp^{n/2}} = x[0] + x[1]e^{-jp^{2}} + x[2]e^{-jp} + x[3]e^{-jp^{3/2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         |                            | = 1 + 0 - 2 + j3 = -1 + j3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         |                            | $X[2] = \int_{n=0}^{3} x[n]e^{-jp^{n}} = x[0] + x[1]e^{-jp} + x[2]e^{-j^{2}p} + x[3]e^{-jp^{3}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|         | = 1 + 0 + 2 - 3 = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | $X[3] = \int_{n=0}^{3} x[n]e^{-j^{3}p^{n/2}} = x[0] + x[1]e^{-j^{3}p^{/2}} + x[2]e^{-j^{3}p} + x[3]e^{-j^{9}p^{/2}}$                                                                                                                                                                                                                                                                                                                                                  |
|         | = 1 + 0 - 2 - j3 = -1 - j3                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|         | Thus $[6, -1+j3, 0, -1-j3]$                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Sol. 38 | Option (A) is correct.                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sol. 39 | Option (C) is correct.<br>The output of causal system depends only on present and past states only. In<br>option (A) $y$ (0) depends on $x$ (- 2) and $x$ (4).<br>In option (B) $y$ (0) depends on $x$ (1). In<br>option (C) $y$ (0) depends on $x$ (- 1). In<br>option (D) $y$ (0) depends on $x$ (5).<br>Thus only in option (C) the value of $y$ ( $t$ ) at $t = 0$ depends on $x$ (- 1) past value.<br>In all other option present value depends on future value. |
| Sol. 40 | Option (D) is correct.                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | We have $h(t) = e^{at}u(t) + e^{bt}u(-t)$<br>This system is stable only when bounded input has bounded output For<br>stability $at < 0$ for $t > 0$ that implies $a < 0$ and $bt > 0$ for $t > 0$ that implies<br>b > 0. Thus, $a$ is negative and $b$ is positive.                                                                                                                                                                                                   |
| Sol. 41 | Option (C) is correct.<br>$G(s) = \frac{K(s+1)}{(s+2)(s+4)}, \text{ and } R(s) = \frac{1}{s}$ $C(s) = G(s)R(s) = \frac{K(s+1)}{s(s+2)(s+4)}$ $= \frac{K}{8s} + \frac{K}{4(s+2)} - \frac{3K}{8(s+4)}$ Thus<br>$c(t) = K : \frac{1}{s} + \frac{1}{2}e^{-2t} - \frac{3}{3}e^{-4t}Du(t)$ At steady-state, $c(3) = 1$                                                                                                                                                      |
|         | $C(s) = G(s)R(s) = \frac{R(s+1)}{s(s+2)(s+4)}$                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         | $=\frac{K}{8s} + \frac{K}{4(s+2)} - \frac{3K}{8(s+4)}$                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | Thus $c(t) = K \cdot \frac{1}{8} + \frac{1}{4} e^{-2t} - \frac{3}{8} e^{-4t} \mathbb{D}u(t)$                                                                                                                                                                                                                                                                                                                                                                          |
|         | At steady-state, $c(3) = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         | Thus $\frac{K}{8} = 1 \text{ or } K = 8$                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         | Then, $G(s) = \frac{8(s+1)}{(s+2)(s+4)} = \frac{12}{(s+4)} - \frac{4}{(s+2)}$                                                                                                                                                                                                                                                                                                                                                                                         |
|         | $h(t) = L^{-1}G(s) = (-4e^{-2t} + 12e^{-4t})u(t)$                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Sol. 42 | Option (A) is correct.                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | We have $x(t) = \begin{cases} 1 & \text{for } -1 \neq t \neq +1 \\ 0 & \text{otherwise} \end{cases}$                                                                                                                                                                                                                                                                                                                                                                  |
|         | Fourier transform is                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         | This is zero at $w = p$ and $w = 2p$                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Sol. 43 | Option (D) is correct.                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | Given $h(n) = [1, -1, 2]$                                                                                                                                                                                                                                                                                                                                                                                                                                             |

|         | x(n) = [1, 0, 1]                                                                                                                         |
|---------|------------------------------------------------------------------------------------------------------------------------------------------|
|         | $y(n) = x(n)^* h(n)$                                                                                                                     |
|         | The length of y [n] is $= L_1 + L_2 - 1 = 3 + 3 - 1 = 5$                                                                                 |
|         | $y(n) = x(n) * h(n) = \int_{k=-3}^{0} x(k) h(n-k)$                                                                                       |
|         | $y(2) = \int_{k=-3}^{3} x(k) h(2-k)$                                                                                                     |
|         | = x (0) h(2 - 0) + x(1) h(2 - 1) + x(2) h(2 - 2)                                                                                         |
|         | = h (2) + 0 + h (0) = 1 + 2 = 3                                                                                                          |
|         | There are 5 non zero sample in output sequence and the value of y [2] is 3.                                                              |
| Sol. 44 | Option (B) is correct.                                                                                                                   |
|         | Mode function are not linear. Thus $y(t) =  x(t) $ is not linear but this functions is                                                   |
|         | time invariant. Option (A) and (B) may be correct.<br>The $y(t) = t x(t)$ is not linear, thus option (B) is wrong and (a) is correct. We |
|         | can see that                                                                                                                             |
|         | $R_1: y(t) = t^2 x(t)$ Linear and time variant.                                                                                          |
|         | $R_2$ : $y(t) = t x(t) $ Non linear and time variant.                                                                                    |
|         | $R_3$ : $y(t) = x (t) $ Non linear and time invariant                                                                                    |
|         | $R_4$ : $y(t) = x(t-5)$ Linear and time invariant                                                                                        |
| Sol. 45 | Option (A) is correct.                                                                                                                   |
|         | Option (A) is correct.<br>Given : $y(n) = \frac{1}{N} x(r) x(n+r)$<br>It is Auto correlation                                             |
|         | It is Auto correlation.                                                                                                                  |
|         | Hence $y(n) = r_{xx}(n) \frac{DFT}{ X(k) ^2}$                                                                                            |
| Sol. 46 | Option (B) is correct.                                                                                                                   |
|         | Current through resistor (i.e. capacitor) is                                                                                             |
|         | Here, $I = I(0^+) e^{-t/RC}$<br>$I(0^+) = \frac{V}{2} = \frac{5}{25mA}$                                                                  |
|         | Here, $I(0^{+}) = \frac{V}{R} = \frac{-2}{25mA}$<br>R = 200k                                                                             |
|         | $RC = 200k \# 10m = 2 \sec I = 25e^{-1} \text{ mA} = V_{\mu} \# R = 5e^{-1} \text{ V}$                                                   |
|         | Here the voltages across the resistor is input to sampler at frequency of 10 Hz. Thus                                                    |
|         | $x(n) = 5e^{\frac{-n}{2 \cdot 10}} = 5e^{-0.05n}$ For $t > 0$                                                                            |
| Sol. 47 | Option (C) is correct.                                                                                                                   |
|         | Since $x(n) = 5e^{-0.05n}u(n)$ is a causal signal                                                                                        |
|         | Its z transform is $X(z) = 5$ = 5z                                                                                                       |
|         | $(1 - e^{-0.05}z^{-1})$ $z - e^{-0.05}$                                                                                                  |
|         | Its ROC is $ e^{-0.05}z^{-1}  > 1$ ** $ z  > e^{-0.05}$                                                                                  |
| Sol. 48 | Option (C) is correct.                                                                                                                   |
|         | $h(t) = e^{-2t}u(t)$                                                                                                                     |
|         | $H(jw) = \#^{3}h(t)e^{-j_{w}t}dt$                                                                                                        |
|         | 5                                                                                                                                        |

$$= \frac{1}{9} \frac{3}{9} e^{-2r} e^{-pr} dt = \frac{1}{9} \frac{3}{9} e^{-(2+pw)} dt = \frac{1}{(2+jw)}$$
Sol. 49 Option (D) is correct:  

$$H(jw) = \frac{1}{(2+jw)}$$
The phase response at  $w = 2$  rad / sec is  

$$+H(jw) = -\tan^{-1}\frac{w}{2} = -\tan^{-1}\frac{2}{2} = -\frac{p}{4} = -0.25p$$
Magnitude response at  $w = 2$  rad / sec is  

$$|H(jw)| = \frac{1}{2^2 + w^2} = \frac{1}{2\sqrt{2}}$$
Input is  $x(t) = 2 \cos(2t)$ 
Output is  $= \frac{1}{2\sqrt{2}} + \frac{q}{2} \cos(2t - 0.25p)$ 

$$= \frac{1}{2}\cos(2t - 0.25p)$$
Sol. 50 Option (D) is correct.  

$$Y(s) = \frac{1}{s(s-1)}$$
Final value theorem is applicable only when all poles of system lies in left half of  $S$ -plane. Here  $s = 1$  is right  $s$  –plane pole. Thus, it is unbounded.  
Sol. 51 Option (A) is correct.  

$$x(t) = e^{-t}u(t)$$
Taking Fourier transform  

$$x(jw) = \frac{1}{1 + w^2}$$
Magnitude at 3dB frequency is  $\frac{1}{2}$ 
Thus  $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{1 + w^2}}$ 
or  $w = 1$  rad  
or  $f = \frac{1}{2p}Hz$   
Sol. 52 Option (B) is correct.  
For discrete time Fourier transform (DTFT) when N "3  

$$x(n) = \frac{1}{2p} - \frac{1}{2p}$$
Sol. 52 Option (B) is correct.  

$$x(0) = -\frac{1}{2p} + \frac{p}{2p} x(e^{jw}) e^{jw^2} dw = \frac{1}{2p} + \frac{p}{2p} x(e^{jw}) dw$$

$$\frac{1}{2p} - \frac{p}{2p}$$
Putting  $n = 0$  we get
$$x(0) = -\frac{1}{p} + \frac{p}{2} X(e^{jw}) e^{jw^2} dw = \frac{1}{2p} + \frac{p}{2p} X(e^{jw}) dw$$

$$\frac{1}{2p} - \frac{p}{2p} (2p + \frac{1}{2p} + \frac{1}{2p} X(e^{jw}) dw = \frac{1}{2p} + \frac{p}{2p} X(e^{jw}) dw = \frac{1}{2p} + \frac{p}{2p} X(e^{jw}) dw$$
or  $\frac{p}{2p} - \frac{p}{2} X(e^{jw}) dw = 2px(0) = 2p + 5 = 10p$ 
Sol. 53 Option (B) is correct.  

$$X(z) = \frac{0.5}{1 - 2z^{-1}}$$

Since ROC includes unit circle, it is left handed system

$$x(n) = -(0.5)(2)^{-n}u(-n-1)$$
  
x (0) = 0

If we apply initial value theorem

$$x(0) = \lim_{z :: 3} X(z) = \lim_{z :: 31 - 2z^{-1}} 0.5$$

That is wrong because here initial value theorem is not applicable because

signal x(n) is defined for n < 0.

Sol. 54 Option (A) is correct.

A Hilbert transformer is a non-linear system.

Sol. 55 Option (B) is correct.

or

$$H(f) = \frac{5}{1+5j10pf}$$

$$H(s) = \frac{1+5j10pf}{1+5s} = \frac{5}{5 + 5h} = \frac{1}{s + 5}$$

$$Y(s) = \frac{1}{s + 5h} = \frac{1}{1+5h} = \frac{1}{1+5h} = \frac{5}{5} - \frac{5}{1+5}$$

$$y(t) = 5(1 - e^{-t/5})u(t)$$

Sol. 56

 $x(t) \xleftarrow{F} X(jw)$ 

Using scaling we have

Option (A) is correct.

Step response

$$x(5t) \xleftarrow{F}{1}{5} X c \frac{jw}{5} m$$

Using shifting property<sub>3</sub>we get 1 <u>iw</u> <u>isw</u>

$$x; 5bt - 5 \mathbb{E} = 5^{X}b_{5} \mathbb{I}e^{5}$$

Sol. 57 Option (D) is correct.

Dirac delta function d(t) is defined at t = 0 and it has infinite value a t = 0. The area of dirac delta function is unity.

Sol. 58 Option (D) is correct.

The ROC of addition or subtraction of two functions  $x_1(n)$  and  $x_2(n)$  is  $R_1 + R_2$ . We have been given ROC of addition of two function and has been asked ROC of subtraction of two function. It will be same.

Sol. 59

Option (A) is correct.

As we have 
$$x(t) = \sin t$$
, thus  $w = 1$   
Now  $H(s) = \frac{1}{2}$   
or  $H(jw) = \frac{s+1}{1-s-1} = \frac{1}{jw+1-j+1}$   
or  $H(jw) = \frac{1}{2} + -45c$   
Thus  $y(t) = \frac{1}{2} \frac{\sin(t-\frac{p}{2})}{2}$   
Sol. 60 Option (C) is correct.  
 $F(s) = \frac{W_0}{2-s-2}$ 

$$s^{2} + w^{2}$$
$$L^{-1}F(s) = \sin w_{o} t$$
$$f(t) = \sin w_{o} t$$

Thus the final value is 
$$-1 \# f(3) \# 1$$
  
Sol. 61 Option (C) is correct.  
 $y(n) = b\sin \frac{5}{6} pn |x(n)$   
Let  $x(n) = d(n)$   
Now  $y(n) = \sin 0 = 0$  (bounded) BIBO stable  
Sol. 62 Option (B) is correct.  
 $c(n) = 1 - e^{-2i}$   
Taking Laplace transform  
 $C(s) = \frac{C(s)}{V(s)} = \frac{2}{s(s+2)} \# s = \frac{2}{s+2}$   
Sol. 63 Option (C) is correct.  
 $h(i) = e^{-i} - \frac{1}{s} + H(s) = \frac{1}{s+1} + \frac{1}{s} = \frac{1}{s} - \frac{1}{s+1}$   
 $x(i) = u(i) - \frac{i}{s} - X(s) = \frac{1}{s}$   
 $Y(s) = H(s) X(s) = \frac{1}{s+1} \# \frac{1}{s} = \frac{1}{s} - \frac{1}{s+1} + \frac{1}{s} + \frac{1}{s} = \frac{1}{s} - \frac{1}{s+1} + \frac{1}{s} + \frac{1}$ 

Thus ROC of 
$$x_1(n) + x_2(n)$$
 is  $R_1 + R_2$  which is  $\frac{5}{6} < |z| < \frac{6}{5}$ 

Sol. 67 Option (D) is correct.

For causal system h(t) = 0 for t # 0. Only (D) satisfy this condition.

Sol. 68 Option (D) is correct.

$$x(n) = b_{2}^{1} |_{u}^{n} u(n)$$

$$y(n) = x^{2}(n) = b_{2}^{1} |_{u}^{2n} u^{2}(n)$$

$$y(n) = b_{1}^{1} |_{E}^{n} u(n) = b_{1}^{1} |_{u}^{n} u(n)$$

$$Y(e^{jw}) = \int_{n=3}^{n=3} -jwn = \int_{n=0}^{n=3} \frac{1}{b} e^{-jwn}$$

$$\int_{n=-3}^{n=9} |_{u} \frac{1}{b} + \frac{1}{b} \frac{1}{a} + \frac{1}$$

, CC

or

or

## Alternative :

Substituting  $z = e^{j}$ 

Taking z transform of (1) we get

$$f(z) = \frac{1}{1 - \frac{1}{4}z^{-1}}$$
  
w we have

$$Y(e^{jw}) = \frac{1}{1 - \frac{1}{4}e^{-jw}}$$
$$Y(e^{j0}) = \frac{1}{1 - \frac{1}{4}e^{-jw}}$$
$$\frac{1}{1 - \frac{1}{4}} = \frac{4}{3}$$

Option (A) is correct.  $s(t) = 8 \cos_2 \frac{p}{2} - 20pt_j + 4 \sin 15pt$   $= 8 \sin 20pt + 4 \sin 15pt$ Here  $A_1 = 8$  and  $A_2 = 4$ . Thus power is  $P = \frac{A_1^2}{2} + \frac{A_2^2}{2} = \frac{8^2}{2} + \frac{4^2}{2} = 40$ 

1

Sol. 70 Option (A) is correct.

or

or

Option (C) is correct.

$$y(t) = 0.5x(t - t_d + T) + x(t - t_d) + 0.5x(t - t_d - T)$$

Taking Fourier transform we have

$$Y(w) = 0.5e^{-j_{W}(-t_{a}+T)}X(w) + e^{-j_{W}t_{a}}X(w) + 0.5e^{-j_{W}(-t_{a}-T)}X(w)$$

$$\frac{Y(w)}{X(w)} = e^{-j_{W}t_{a}}[0.5e^{j_{W}T} + 1 + 0.5e^{-j_{W}T}]$$

$$= e^{-j_{W}t_{a}}[0.5(e^{j_{W}T} + e^{-j_{W}T}) + 1] = e^{-j_{W}t_{a}}[\cos wT + 1]$$

$$H(w) = \frac{Y(w)}{X(w)} = e^{-j_{W}t_{a}}(\cos wT + 1)$$

Sol. 71

Sol. 69

For continuous and aperiodic signal Fourier representation is continuous and aperiodic.

For continuous and periodic signal Fourier representation is discrete and aperiodic. For discrete and aperiodic signal Fourier representation is continuous and periodic. For discrete and periodic signal Fourier representation is discrete and periodic.

| Sol. 72 | Option (B) is correct.                                                                    |                                                                                                                                    |  |
|---------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|
|         |                                                                                           | $y(n) = Ax(n - n_o)$                                                                                                               |  |
|         | Taking Fourier transform                                                                  |                                                                                                                                    |  |
|         |                                                                                           | $Y(e^{j_{W}}) = A e^{-j_{W} n_o} X(e^{j_{W}})$                                                                                     |  |
|         | or                                                                                        | $H(e_{jw}) = \frac{Y(e^{j_{w}})}{\frac{N}{X(e)}} = Ae_{-jw_o n_o}$                                                                 |  |
|         | Thus +1                                                                                   | $H(e^{j_w}) = -w_o n_o$                                                                                                            |  |
|         | For LTI discrete time system phase and frequency of $H(e^{j_w})$ are periodic with period |                                                                                                                                    |  |
|         | 2p. So in general form                                                                    |                                                                                                                                    |  |
|         |                                                                                           | $q(w) = -n_o w_o + 2pk$                                                                                                            |  |
| Sol. 73 | Option (A) is c<br>From                                                                   | correct.<br>$x(n) = [\frac{1}{2}, 1, 2, 1, 1, \frac{1}{2}]$                                                                        |  |
|         |                                                                                           | $y(n) = x \wedge \frac{n}{2} - 1$ h, <i>n</i> even                                                                                 |  |
|         |                                                                                           | = 0, for <i>n</i> odd                                                                                                              |  |
|         | n = -2,                                                                                   | $y(-2) = x(\frac{-2}{2} - 1) = x(-2) = \frac{1}{2}$                                                                                |  |
|         | n = -1,                                                                                   | y(-1) = 0                                                                                                                          |  |
|         | n=0,                                                                                      | y(-1) = 0<br>$y(0) = x(\frac{0}{2} - 1) = x(-1) = 1$<br>y(1) = 0<br>y(2) = x(2 - 1) = x(0) = 2                                     |  |
|         | n = 1,                                                                                    | y(1) = 0                                                                                                                           |  |
|         | n = 2                                                                                     | y(2) - x(2 - 1) - x(0) - 2                                                                                                         |  |
|         | n = 3,                                                                                    | y(3) = 0                                                                                                                           |  |
|         | n = 4                                                                                     | y (3) = 0<br>y (4) = x ( $\frac{4}{2}$ - 1) = x (1) = 1                                                                            |  |
|         | n = 5,                                                                                    | y(5) = 0                                                                                                                           |  |
|         | n = 6                                                                                     | y(5) = 0y(6) = x(-6 - 1) = x(2) = -1                                                                                               |  |
|         | Hence                                                                                     | y (6) = $x \left(\frac{6}{2} - 1\right) = x \left(2\right) = \frac{1}{2}$<br>y (n) = $\frac{1}{2}d(n+2) + d(n) + 2d(n-2) + d(n-4)$ |  |
|         | $+\frac{1}{2}d_{n}(n-6)$                                                                  |                                                                                                                                    |  |

Sol. 74

Option (C) is correct.

Here y(n) is scaled and shifted version of x(n) and again y(2n) is scaled version of y(n) giving

$$z(n) = y(2n) = x(n-1)$$
  
=  $\frac{1}{2}d(n+1) + d(n) + 2d(n-1) + d(n-2) + \frac{1}{2}d(n-3)$   
2

Taking Fourier transform.

$$Z(e^{jw}) = \frac{1}{2}e^{jw} + 1 + 2e^{-jw} + e^{-2jw} + \frac{1}{2}e^{-3jw}$$
$$= e^{-jw}b\frac{1}{2}e^{2jw} + e^{jw} + 2 + e^{-jw} + \frac{1}{2}e^{-2jw}\mathbf{I}$$
$$= e^{-jw}b\frac{e^{2jw} + e^{-2jw}}{2} + e^{jw} + 2 + e^{-jw}\mathbf{I}$$
$$Z(e^{jw}) = e^{-jw}[\cos 2w + 2\cos w + 2]$$

or

$$Z(e^{J_W}) = e^{-J_W}[\cos 2W + 2\cos W + 2]$$

Sol. 75

$$x(t) \xleftarrow{F} X(f)$$

Using scaling we have

Option (B) is correct.

$$x(at) \xleftarrow{F} \frac{1}{|a|} X c \frac{f}{a}$$

Thus

$$x \mathbf{b} \frac{1}{3} f \mathbf{I} \xleftarrow{F} 3X(3f)$$

Using shifting property we get

Option (A) is correct.

Thus

$$e^{-j2p_{0}f_{0}t}x(t) = X(f+f_{0})$$

$$\frac{1}{3}e^{-j\frac{4}{3}pt}xb\frac{1}{3}t \downarrow \longleftrightarrow X(3f+2)$$

$$e^{-j2p\frac{2}{3}t}xb\frac{1}{3}t \downarrow \longleftrightarrow X(3(f+\frac{2}{3}))$$

$$\frac{1}{3}e^{-jp\frac{4}{3}t}xb\frac{1}{3}t \downarrow \longleftrightarrow X[3(f+\frac{2}{3})]$$

Sol. 76

з  $|h(n)| \leq 3$ . The plot of given h(n) is A system is stable if / y[n]1 2 3 0 4 5 6 -4 -3 -2 -1  $\int_{n=-3}^{3} |h(n)| = \int_{n=-3}^{6} |h(n)|$ = 1 + 1 + 1 + 1 + 2 + 2 + 2 + 2 + 2 + 2 = 15 < 3

Sol. 77

Hence system is stable but h(n) ! 0 for n < 0. Thus it is not causal. Option (D) is correct.

$$H(z) = \frac{z}{z - 0.2} |z| < 0.2$$

We know that

Option (A) is correct.

$$-a^{n}u[-n-1] \stackrel{\text{st}}{=} \frac{1}{1-az^{-1}} \qquad |z| < a$$
$$h[n] = -(0.2)^{n}u[-n-1]$$

Thus

-6

Thus

Sol. 78 Option (C) is correct.

We have

The Fourier transform of a conjugate symmetrical function is always real.

x(n) = [-4 - j5, 1 + 2j, 4]

 $x^{*}(n) = [-4 + j5, 1 - 2j, 4]$ 

Sol. 79

Sol. 80

$$x^{*}(-n) = [4, \quad 1-2j, \quad -4+j5]$$

$$x_{cas}(n) = \frac{x(n) - x^{*}(-n)}{2} = [-4-j\frac{5}{2}, \quad 2j \quad 4-j\frac{5}{2}]$$
Option (C) is correct.  
We have
$$2y(n) = \alpha y(n-2) - 2x(n) + bx(n-1)$$
Taking z transform we get
$$2Y(z) = \alpha Y(z)z^{-2} - 2X(z) + bX(z)z^{-1}$$

or

or

 $\frac{Y(z)}{X(z)} = c \frac{bz^{-1} - 2}{2 - \alpha z^{-2}} m \qquad ...(i)$  $H(z) = \frac{z(\frac{b}{2} - z)}{(z^2 - \frac{a}{2})}$ 

It has poles at  $! \frac{a}{2}$  and zero at 0 and b/2. For a stable system poles must lie inside the unit circle of *z* plane. Thus

$$\left| \cdot, \frac{\alpha}{2} \right| < 1$$
$$|a| < 2$$

or

But zero can lie anywhere in plane. Thus, *b* can be of any value.

Sol. 81

Option (D) is correct.  
We have 
$$x(n) = e^{jp^{n}/4}$$
  
and  $h(n) = 4 \quad 2 \quad d(n+2) - 2\sqrt{2} \quad d(n+1) - 2\sqrt{2} \quad d(n-1)$   
 $+ 4\sqrt{2} \quad d(n-2)$ 

Now

or

or

$$y(n) = x(n)^* h(n)$$

$$= \int_{k=-3}^{3} x(n-k)h(k) = \int_{k=-2}^{2} x(n-k)h(k)$$

$$y(n) = x(n+2)h(-2) + x(n+1)h(-1) + x(n-1)h(1) + x(n-2)h(2)$$

$$= 4\sqrt{2}e^{j\frac{p}{4}(n+2)} - 4\sqrt{2}e^{j\frac{p}{4}(n+1)} - 2\sqrt{2}e^{j\frac{p}{4}(n-1)} + 4\sqrt{2}e^{j\frac{p}{4}(n-2)}$$

$$= 4\sqrt{2}6e^{j\frac{p}{4}(n+2)} + e^{j\frac{p}{4}(n-2)}@-2 26e^{j\frac{p}{4}(n+1)} + e^{j\frac{p}{4}(n-1)}@$$

$$= 42e^{i\frac{6}{4}6e^{j\frac{p}{4}} + j\frac{p}{2}e^{i\frac{p}{4}}@-j\frac{p}{2}} = 42e^{i\frac{6}{4}[0]} - 22e^{i\frac{p}{4}[2\cos_4]} =$$

$$y(n) = -4e^{j\frac{-n}{4}}n$$

Sol. 82

Option (B) is correct.

From given graph the relation in x(t) and y(t) is

$$y(t) = -x [2(t+1)]$$
$$x(t) \xleftarrow{F} X(f)$$

Using scaling we have

Thus 
$$x(at) \xleftarrow{F} \frac{1}{|a|} x c \frac{f}{a}$$
$$x(2t) \xleftarrow{F} \frac{1}{2} x c \frac{f}{2} m$$

Using shifting property we get

$$x(t-t_0) = e^{-j^2 p^{ft_0}} X(f)$$

$$x[2(t+1)] \stackrel{F}{\longleftrightarrow} e^{-j^2 p f(-1)} \frac{1}{2} X b \frac{f}{2} = \frac{e^{j^2 p f}}{2} X b \frac{f}{2}$$

$$-x[2(t+1)] \stackrel{F}{\longleftrightarrow} - \frac{e^{j^2 p f}}{2} X \frac{f}{c n}$$

Sol. 83 Option (C) is correct.

Thus

From the Final value theorem we have

$$\lim_{t \to 3} i(t) = \lim_{s \to 0} sI(s) = \lim_{s \to 0} s\frac{2}{s(1+s)} = \lim_{s \to 0} \frac{2}{s(1+s)} = 2$$

Sol. 84 Option (D) is correct.

Here 
$$C_3 = 3 + i5$$

**SIGNALS & SYSTEMS** 

For real periodic signal  $C_{-k} = C_k^*$  $C_{-3} = C_k = 3 - i5$ Thus Sol. 85 Option (C) is correct. y(t) = 4x(t-2)Taking Fourier transform we get  $Y(e^{j2pf}) = 4e^{-j2pf^2}X(e^{j2pf})$ Time Shifting property  $\frac{Y(e^{j2pf})}{X(e^{j2pf})} = 4e^{-4jpf}$ or  $H(e^{j2pf}) = 4e^{-4jpf}$ Thus Option (B) is correct. Sol. 86 h(n) = 3d(n-3)We have  $H(z) = 2z^{-3}$ Taking *z* transform or  $X(z) = z^{4} + z^{2} - 2z + 2 - 3z^{-4}$  $Y(z) = H(z)X(z) = 2z^{-3}(z^4 + z^2 - 2z + 2 - 3z^{-4})$ Now  $= 2(z + z^{-1} - 2z^{-2} + 2z^{-3} - 3z^{-7})$ Taking inverse *z* transform we have y(n) = 2[d(n+1) + d(n-1) - 2d(n-2)]+ 2d(n-3) - 3d(n-7)] y(4) = 0At n = 4, Option (A) is correct. Sol. 87 System is non causal because output depends on future value y(-1) = x(-1+1) = x(0)For *n* # 1  $y(n - n_0) = x(n - n_0 + 1)$ y(n) = x(n + 1) Time varying Depends on Future y(1) = x(2)None causal For bounded input, system has bounded output. So it is stable. y(n) = x(n) for n 1 = 0 for n = 0= x(x+1) for n # - 1So system is linear. Option (C) is correct. Sol. 88 The frequency response of RC-LPF is  $H(f) = \frac{1}{1 + j2pfRC}$ Now H(0) = 1 $\frac{|H(f_1)|}{H(0)} = \frac{1}{\frac{1}{1 + 4p^2 f_1^2 R^2 C^2}} \$ 0.95$  $1 + 4p^2 f_1^2 R^2 C^2 \# 1.108$ or  $4p^2f_1^2R^2C^2 \# 0.108$ or  $2pf_1 RC # 0.329$ or  $f_1 # \frac{0.329}{2pRC}$ or

|                                                                           |                                                                                        | с н 0.329                                                                                                   |  |
|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--|
|                                                                           | or                                                                                     | $f_1 = \frac{0.329}{2pRC}$                                                                                  |  |
|                                                                           | or                                                                                     | $f_1 # 2 \frac{0.329}{p1k \# 1m}$                                                                           |  |
|                                                                           | or                                                                                     | <i>f</i> <sub>1</sub> <b>#</b> 52.2 Hz                                                                      |  |
|                                                                           | Thus $f_{1 \max}$                                                                      | = 52.2 Hz                                                                                                   |  |
| Sol. 89                                                                   | Option (A) is correct.                                                                 |                                                                                                             |  |
|                                                                           | $H(w) = \frac{1}{1 + jwRC}$                                                            |                                                                                                             |  |
|                                                                           | $1 + jWRC$ $q(w) = -\tan^{-1}wRC$                                                      |                                                                                                             |  |
|                                                                           |                                                                                        |                                                                                                             |  |
|                                                                           | $t_g = -\frac{dq}{dv}$                                                                 | $\frac{W}{V} = \frac{RC}{1 + w^2 R^2 C^2} = \frac{10^{-3}}{1 + 4p^2 \# 10^4 \# 10^{-6}} = 0.717 \text{ ms}$ |  |
| Sol. 90                                                                   | Option (C) is correct.                                                                 |                                                                                                             |  |
|                                                                           | If                                                                                     | $x(t)^* h(t) = g(t)$                                                                                        |  |
|                                                                           | Then $x(t-t)$                                                                          | $(T_1)^* h(t - T_2) = y(t - T_1 - T_2)$                                                                     |  |
|                                                                           | Thus $x(t - $                                                                          | (t-7) = x(t+5-7) = x(t-2)                                                                                   |  |
| Sol. 91                                                                   | Option (B) is correct.                                                                 |                                                                                                             |  |
|                                                                           | In option (B) the given function is not periodic and does not satisfy                  |                                                                                                             |  |
|                                                                           |                                                                                        | it cant be expansion in Fourier series.                                                                     |  |
|                                                                           | x(t) = T                                                                               | $= 2 \cos pt + 7 \cos t$ $= 2p - 2$                                                                         |  |
|                                                                           | $I_1$                                                                                  | $\frac{1}{W} = 2$                                                                                           |  |
|                                                                           | $T_2$                                                                                  | $=\frac{2p}{2}=2p$                                                                                          |  |
|                                                                           | $T_1$                                                                                  |                                                                                                             |  |
|                                                                           | $\overline{\frac{1}{T_2}}$                                                             | $= \frac{2p}{w} = 2$ $= \frac{2p}{1} = 2p$ $= \frac{1}{p} = irrational$                                     |  |
| Sol. 92                                                                   | Option (C) is correct.                                                                 |                                                                                                             |  |
|                                                                           | From the duality propert                                                               | y of fourier transform we have                                                                              |  |
|                                                                           | If                                                                                     | $x(t) \xleftarrow{FT} X(f)$                                                                                 |  |
|                                                                           | Then                                                                                   | $X(t) \xleftarrow{FT} x(-f)$                                                                                |  |
|                                                                           | Therefore if <i>e</i>                                                                  | $L^{t}u(t) \xleftarrow{FT} \frac{1}{1+j2pf}$                                                                |  |
|                                                                           | Then $\frac{1}{1}$                                                                     | $\frac{1}{j2pt} \xleftarrow{FT} e^f u(-f)$                                                                  |  |
| Sol. 93                                                                   | Option (A) is correct.                                                                 |                                                                                                             |  |
|                                                                           | $q(w) = -wt_0$                                                                         |                                                                                                             |  |
|                                                                           | $t_p$ =                                                                                | $=\frac{-q(w)}{w}=t_0$                                                                                      |  |
|                                                                           | and $t_g =$                                                                            | $=-\frac{dq(w)}{dw}=t_0$                                                                                    |  |
|                                                                           | Thus $t_p =$                                                                           | $t_g = t_0 = \text{constant}$                                                                               |  |
| Sol. 94                                                                   | Option (*) is correct.                                                                 |                                                                                                             |  |
|                                                                           | $X(s) = \frac{5-s}{s^2-s-2} = \frac{5-s}{(s+1)(s-2)} = \frac{-2}{s+1} + \frac{1}{s-2}$ |                                                                                                             |  |
| $s^2 - s - 2$ $(s+1)(s-2)$ $s+1$ $s-2$<br>Here three ROC may be possible. |                                                                                        |                                                                                                             |  |
|                                                                           | Here unce Role may be possible.                                                        |                                                                                                             |  |

Re 
$$(s) < -1$$
  
Re  $(s) > 2$   
 $-1 < \text{Re}(s) < 2$ 

Since its Fourier transform exits, only -1 < Re(s) < 2 include imaginary axis. so this ROC is possible. For this ROC the inverse Laplace transform is

$$x(t) = [-2e^{-t}u(t) - 2e^{2t}u(-t)]$$

Sol. 95 Option (B) is correct.

For left sided sequence we have

$$-a^{n}u(-n-1) \xleftarrow{z} \frac{1}{1-az^{-1}} \qquad \text{where } |z| \le a$$
$$-5^{n}u(-n-1) \xleftarrow{z} \frac{1}{1-az^{-1}} \qquad \text{where } |z| \le 5$$

Thus

$$-5^{n}u(-n-1) \xleftarrow{z} \frac{1}{1-5z^{-1}} \qquad \text{where } |z| \le 5$$
  
$$-5^{n}u(-n-1) \xleftarrow{z} \frac{z}{z-5} \qquad \text{where } |z| \le 5$$

or

Since ROC is  $|z| \le 5$  and it include unit circle, system is stable.

Alternative :

$$h(n) = -5^{n}u(-n-1)$$
  

$$H(z) = \int_{n=-3}^{3} h(n) z^{-n} = \int_{n=-3}^{-1} -5^{n} z^{-n} = -\int_{n=-3}^{-1} (5z^{-1})^{n} z^{-n}$$

Let n = -m, then

$$H(z) = -\sum_{n=-1}^{-3} (5z^{-1})^{-m} = 1 - \sum_{m=0}^{3} (5^{-1}z)^{-m}$$
  
= 1 -  $\frac{1}{1 - 5^{-1}z}$ ,  $|5 - 1z| < 1 \text{ or } z < 5$   
=  $1 - \frac{5}{5 - z} = \frac{z}{z - 5}$ 

Sol. 96

Option (B) is correct.

$$\frac{1}{s^{2}(s-2)} = \frac{1}{s^{2}} \# \frac{1}{s-2}$$

$$\frac{1}{s^{2}} \# \frac{1}{s-2} \longleftrightarrow^{L} (t^{*}e^{2t})u(t)$$

Here we have used property that convolution in time domain is multiplication in s – domain

$$X_1(s) X_2(s) \xleftarrow{LT} x_1(t) * x_2(t)$$

Sol. 97

Option (A) is correct.

We have

$$h(n) = u(n)$$
  

$$H(z) = \bigwedge_{n=-3}^{3} x(n) \cdot z^{-n} = \bigwedge_{n=0}^{3} 1 \cdot z^{-n} = \bigwedge_{n=0}^{3} (z^{-1})^{n}$$

H(z) is convergent if

$$\int_{n=0}^{3} (z^{-1})^n < \mathbf{3}$$

and this is possible when  $|z^{-1}| < 1$ . Thus ROC is  $|z^{-1}| < 1$  or z > 1Option (A) is correct.

We know that 
$$d(t)x(t) = x(0)d(t)$$
 and  $\#^{3}d(t) = 1$ 

Sol. 98

Let  $x(t) = \cos(\frac{3}{2}t)$ , then x(0) = 1 $#^{3}_{-3}d(t)x(t) = #^{3}_{x}(0)d(t)dt = #^{3}_{-3}d(t)dt = 1$ Now Sol. 99 Option (B) is correct. Let *E* be the energy of f(t) and  $E_1$  be the energy of f(2t), then  $E = \#_{-3}^{3}[f(t)]^{2}dt$  $E_{1} = \#_{-3}^{3}[f(2t)]^{2}dt$ and Substituting 2t = p we gets  $E = \#^{3}[f(p)]^{2} \frac{dp}{dp} = \frac{1}{2} \#^{3} \frac{p}{dp} = \frac{E}{2}$ Sol. 100 Option (B) is correct. Since  $h_1(t) ! 0$  for t < 0, thus  $h_1(t)$  is not causal  $h_2(t) = u(t)$  which is always time invariant, causal and stable.  $h_2(t) = \frac{u(t)}{t}$  is time variant. 1 + t $h_4(t) = e^{-3t}u(t)$  is time variant. Sol. 101 Option (B) is correct. h(t) = f(t) \* g(t)We know that convolution in time domain is multiplication in s – domain.  $f(t)^* g(t) = h(t) \xleftarrow{L} H(s) = F(s) \# G(s)$  $H(s) = \frac{s+2}{s^2+1} \# \frac{s^2+1}{(s+2)(s+3)} = \frac{1}{s+3}$ Thus Sol. 102 Option (B) is correct. Since normalized Gaussion function have Gaussion FT  $\leftarrow$   $e^{-\frac{p^{2}e^{2}}{a}}$ Thus Sol. 103 Option (B) is correct.  $x(t) = ax_1(t) + bx_2(t)$ Let  $ay_1(t) = atx_1(t)$  $by_2(t) = btx_2(t)$ Adding above both equation we have  $ay_1(t) + by_2(t) = atx_1(t) + btx_2(t) = t [ax_1(t) + bx_2(t)] = tx (t)$  $ay_1(t) + by_2(t) = y(t)$ Thus system is linear or If input is delayed then we have  $y_d(d) = tx(t - t_0)$ If output is delayed then we have  $y(t - t_0) = (t - t_0) x(t - t_0)$ which is not equal. Thus system is time varying. Option (A) is correct. Sol. 104  $h(t) = e^{2t} \frac{LS}{LS} H(s) = -\frac{1}{s - 2}$  $x(t) = e^{3t} \frac{LS}{LS} X(s) = -\frac{1}{s - 3}$ We have and

Thus

Now output is

$$Y(s) = H(s)X(s) = \frac{1}{s-2} \# \frac{1}{s-3} = \frac{1}{s-3} - \frac{1}{s-3}$$
  
$$y(t) = e^{3t} - e^{2t}$$

$$y(i) = e = e$$

Option (C) is correct.

We know that for a square wave the Fourier series coefficient

$$C_{nsq} = \frac{AT}{T} \frac{\sin \frac{nW_0T}{2}}{\frac{nW_0T}{2}} \qquad \dots (i)$$

$$C_{nsq} \sqrt{\frac{1}{n}}$$

Thus

If we integrate square wave, triangular wave will be obtained,

Hence

$$C_{ntri} \setminus \frac{1}{n^2}$$

Sol. 106

Sol. 105

Option (B) is correct.  

$$u(t) - u(t-1) = f(t) \xleftarrow{L} F(s) = \frac{1}{s}[1 - u(t) - u(t-2)] = g(t) \xleftarrow{L} G(s) = \frac{1}{s}[1 - f(t)^* g(t) \xleftarrow{L} F(s) G(s)] = \frac{1}{s^2}[1 - e^{-s}][1 - e^{-2s}]$$

$$= \frac{1}{s^2}[1 - e^{-2s} - e^{-s} + e^{-3s}]$$
or
$$f(t)^* g(t) \xleftarrow{L} = \frac{1}{s^2} - \frac{e^{-2s}}{s^2} - \frac{e^{-s}}{s^2} + \frac{e^{-3s}}{s^2}$$

or

Taking inverse Laplace transform we have

$$f(t)^* g(t) = t - (t-2)u(t-2) - (t-1)u(t-1) + (t-3)u(t-3)$$
  
The graph of option (B) satisfy this equation.

 $f(nT) = a^{nT}$ 

Sol. 107

Option (A) is correct.

Sol. 108

Option (A) is correct.

We have

Taking z -transform we get

$$F(z) = \int_{n=-3}^{3} a^{nT} z^{-n} = \int_{n=-3}^{3} (a^{T})^{n} z^{-n} = \int_{n=0}^{3} b^{nT} \frac{1}{z} = \frac{z}{z - a^{T}}$$

Option (B) is correct. Sol. 109  $\mathsf{L}[f(t)] = F(s)$ If Applying time shifting property we can write  $\mathbf{L}[f(t-T)] = e^{-sT}F(s)$ 

- Option (A) is correct. Sol. 110
- Option (A) is correct. Sol. 111
- Sol. 112 Option (C) is correct.
- Given z transform

$$C(z) = \frac{z^{-1}(1-z^{-4})}{4(1-z^{-1})^2}$$

Applying final value theorem

$$\lim_{n \to 3} f(n) = \lim_{z \to 1} (z-1) f(z)$$

$$\lim_{z \to 1} (z-1)F(z) = \lim_{z \to 1} (z-1) \frac{z^{-1}(1-z^{-4})}{4(1-z)} = \lim_{z \to 1} \frac{z^{-1}(1-z^{-4})(z-1)}{4(1-z)}$$

$$= \lim_{z \to 1} \frac{z^{-1}z^{-4}(z^{4}-1)(z-1)}{4z(z-1)}$$

$$= \lim_{z \to 1} \frac{z^{-3}(z-1)(z+1)(z^{2}+1)(z-1)}{(z-1)^{2}}$$

$$= \lim_{z \to 1} \frac{z^{-3}}{4}(z+1)(z^{2}+1) = 1$$

Sol. 113

Option (A) is correct.

We have 
$$F(s)$$

 $\lim_{t \to 3} f(t)$  final value theorem states that:

$$\lim_{t \to a} f(t) = \lim_{s \to a} sF(s)$$

 $s^2 + w^2$ 

It must be noted that final value theorem can be applied only if poles lies in -ve half of *s*-plane.

Here poles are on imaginary axis  $(s_1, s_2 = \mathbf{1} j \mathbf{w})$  so can not apply final value theorem. so  $\lim_{t \to \mathbf{3}} f(t)$  cannot be determined.

Sol. 114 Option (D) is correct.

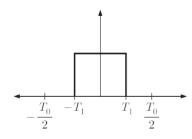
Trigonometric Fourier series of a function x(t) is expressed as :

$$x(t) = A_0 + \int_{n=1}^{3} [A_n \cos n \, \forall t + B_n \sin n \, \forall t]$$

For even function x(t),  $B_n = 0$ 

So

$$x(t) = A_0 + \bigwedge_{n=1}^{n} A_n \cos n \, \forall t$$


Series will contain only DC & cosine terms.

Sol. 115

Option (C) is correct. Given periodic signal

$$x(t) = * 0, T_1 < |t| < \frac{T_0}{2}$$

The figure is as shown below.



For x(t) fourier series expression can be written as

$$x(t) = A_0 + \sum_{n=1}^{3} [A_n \cos n \, \forall t + B_n \sin n \, \forall t]$$

where dc term

$$A_{0} = \frac{1}{T_{0}} \#_{x}(t) dt = \frac{1}{T_{0}} \#_{T/2}^{T_{0}/2} x(t) dt$$

$$= \frac{1}{h_0} : \frac{1}{2} \sum_{n=1}^{\infty} x(t) dt + \frac{1}{4} \sum_{n=1}^{n} x(t) dt + \frac{1}{4} \sum_{n=1}^{n-1} x(t) dt = \frac{1}{H_0} (0 + 2T_1 + 0)$$

$$A_0 = \frac{2T_1}{T_0}$$
Sol. 116 Option (B) is correct.  
The unit impulse response of a LTI system is  $u(t)$   
Let  $h(t) = u(t)$   
Taking LT we have  $H(s) = \frac{1}{s}$   
If the system excited with an input  $x(t) = e^{-st}u(t), a > 0$ , the response  $Y(s) = X(s)H(s)$   
 $X(s) = L(x(t)) = (\frac{1}{s+a})$   
so  $Y(s) = \frac{1}{(s+a)s} = \frac{1}{a} \cdot \frac{1}{s} - \frac{1}{s+a} = \frac{1}{s+a}$   
Taking inverse Laplace, the response will be  
 $y(t) = \frac{1}{a} (1 - e^{-st})$   
Sol. 117 Option (B) is correct.  
We have  $x[n] = \sum_{k=0}^{3} (n-k)$   
 $X(z) = \frac{1}{2} x(n)z^{-n} = \sum_{k=0}^{3} \sum_{k=0}^{3} (dn-k)z^{-n}E$   
Since  $d(n-k)$  defined only for  $n = k$  so  
 $x(2) = \frac{1}{2} z^{-k} = \frac{1}{(1-1/z)} - \frac{z}{(z-1)}$   
Sol. 118 Option (B) is correct.  
Sol. 119 Option (B) is correct.  
 $x(t) = \frac{1}{c} x(t)$   
by differentiation property:  
 $F(\frac{dx(t)}{dt}E = j2pfX(t))$   
Sol. 120 Option (C) is correct.  
We have  $f(t) < -\frac{s}{3} g(t) = \frac{s}{3} (2p(-s))$   
Sol. 120 Option (B) is correct.  
We have  $F(g(t)) = \frac{1}{3} g(t)e^{-jst}dt = 2p(t-s)$   
Sol. 120 Option (B) is correct.  
We have  $f(t) < -\frac{s}{3} (2p(-s))$   
Sol. 120 Option (B) is correct.  
We have  $f(t) < \frac{s}{3} (2p(-s))$   
Sol. 120 Option (B) is correct.  
We have  $f(t) < -\frac{s}{3} (2p(-s))$   
Sol. 120 Option (B) is correct.  
We have  $f(t) < \frac{s}{3} (2p(-s))$   
Sol. 121 Option (B) is correct.  
Given function  
 $x(t) = e^{ct} \cos(\Omega)$   
Now  $\cos(\Omega t) + \frac{s}{3} \frac{1}{s^2 + Q^2}$   
If  $x(t) = \frac{1}{s} (x(t) + \frac{1}{s} \times x(s)$ 

then

so

$$e^{a^{t}}cos(\alpha t) \xleftarrow{\mathsf{L}} X(s-s_{0})$$
$$e^{\alpha^{t}}cos(\alpha t) \xleftarrow{\mathsf{L}} \frac{(s-\alpha)}{(s-\alpha)^{2}+\alpha^{2}}$$

shifting in s-domain

Sol. 122

Sol. 123

Option (C) is correct.

For a function x(t), trigonometric fourier series is :

where

$$x(t) = A_0 + \int_{n=1}^{3} [An \cos n \, \forall t + Bn \sin n \, \forall t]$$

$$A_0 = \frac{1}{T_0} \# x(t) \, dt$$

$$T_0 = \text{Fundamental period}$$

$$A_n = \frac{2}{T_0} \# x(t) \cos n \, \forall t \, dt$$

$$B_n = \frac{2}{T_0} \# x(t) \sin n \, \forall t \, dt$$

For an even function x(t), coefficient  $B_n = 0$ 

 $A_n$ 

for an odd function 
$$x(t)$$
,  $A_0 = 0$ 

$$A_n = 0$$

so if x(t) is even function its fourier series will not contain sine terms.

Option (C) is correct.

The conjugation property allows us to show if x(t) is real, then X(jw) has conjugate symmetry, that is

Proof :

$$X(-jw) = X^{>}(jw)$$
$$X(jw) = \frac{3}{\#}x(t)e^{-jwt}dt$$

[x(t) real]

replace w by - w then -3

$$X(-jw) = \underset{a}{\#} x(t) e^{jwt} dt$$

$$X^{(-jw)} = \underset{a}{\#} x(t) e^{-jwt} dt_{\mathbb{G}} = \underset{a}{\#} x^{(t)} e^{jwt} dt_{\mathbb{G}}$$
if  $x(t)$  real  $x^{(t)} = x(t)$ 

$$X^{(t)} = x(t)$$

$$X^{(t)} = \underset{a}{\#} x(t) e^{jwt} dt = X(-jw)$$

$$x^{(t)} = \underset{a}{\#} x(t) e^{jwt} dt = X(-jw)$$